Stability of equivariant logarithmic tangent sheaves on toric varieties of Picard rank two
Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 33 (2024) no. 3, pp. 739-783.

For an equivariant log pair (X,D) where X is a normal toric variety and D a reduced Weil divisor, we study slope-stability of the logarithmic tangent sheaf 𝒯 X (-logD). We give a complete description of divisors D and polarizations L such that 𝒯 X (-logD) is (semi)stable with respect to L when X has a Picard rank one or two.

Pour une paire logarithmique équivariante (X,D)X est une variété torique normale et D un diviseur de Weil réduit, nous étudions la stabilité au sens de la pente du faisceau tangent logarithmique 𝒯 X (-logD). Nous donnons une description complète des diviseurs réduits D et polarisations L sur X tels que le faisceau tangent logarithmique 𝒯 X (-logD) est (semi)stable par rapport à L lorsque X est une variété torique lisse de rang de Picard un ou deux.

Received:
Accepted:
Published online:
DOI: 10.5802/afst.1786
Classification: 14M25
Keywords: Toric varieties, logarithmic tangent sheaves, slope-stability
Mot clés : Variétés toriques, faisceaux tangent logarithmiques, stabilité au sens de la pente

Achim Napame 1

1 Université de Bretagne Occidentale, Laboratoire de Mathématiques de Bretagne Atlantique, UMR CNRS 6205, 6 Avenue Victor Le Gorgeu, 29238 Brest
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{AFST_2024_6_33_3_739_0,
     author = {Achim Napame},
     title = {Stability of equivariant logarithmic tangent sheaves on toric varieties of {Picard} rank two},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     pages = {739--783},
     publisher = {Universit\'e Paul Sabatier, Toulouse},
     volume = {Ser. 6, 33},
     number = {3},
     year = {2024},
     doi = {10.5802/afst.1786},
     language = {en},
     url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1786/}
}
TY  - JOUR
AU  - Achim Napame
TI  - Stability of equivariant logarithmic tangent sheaves on toric varieties of Picard rank two
JO  - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY  - 2024
SP  - 739
EP  - 783
VL  - 33
IS  - 3
PB  - Université Paul Sabatier, Toulouse
UR  - https://afst.centre-mersenne.org/articles/10.5802/afst.1786/
DO  - 10.5802/afst.1786
LA  - en
ID  - AFST_2024_6_33_3_739_0
ER  - 
%0 Journal Article
%A Achim Napame
%T Stability of equivariant logarithmic tangent sheaves on toric varieties of Picard rank two
%J Annales de la Faculté des sciences de Toulouse : Mathématiques
%D 2024
%P 739-783
%V 33
%N 3
%I Université Paul Sabatier, Toulouse
%U https://afst.centre-mersenne.org/articles/10.5802/afst.1786/
%R 10.5802/afst.1786
%G en
%F AFST_2024_6_33_3_739_0
Achim Napame. Stability of equivariant logarithmic tangent sheaves on toric varieties of Picard rank two. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 33 (2024) no. 3, pp. 739-783. doi : 10.5802/afst.1786. https://afst.centre-mersenne.org/articles/10.5802/afst.1786/

[1] Robert J. Berman; Bo Berndtsson Real Monge-Ampère equations and Kähler-Ricci solitons on toric log Fano varieties, Ann. Fac. Sci. Toulouse, Math., Volume 22 (2013) no. 4, pp. 649-711 | DOI | Numdam | Zbl

[2] David Cox; John Little; Hal Schenck Toric Varieties, Graduate Studies in Mathematics, 124, American Mathematical Society, 2011

[3] Vladimir Danilov The Geometry of Toric Varieties, Russ. Math. Surv., Volume 33 (1978), pp. 97-154 | DOI | Zbl

[4] Jyoti Dasgupta; Arijit Dey; Bivas Khan Stability of equivariant vector bundles over toric varieties, Doc. Math., Volume 25 (2020), pp. 1787-1833 | DOI | Zbl

[5] Hélène Esnault; Eckart Viehweg Lectures on Vanishing Theorems, DMV Seminar, 20, Birkhäuser, 1992 | DOI

[6] Henri Guenancia Semi-stability of the tangent sheaf of singular varieties, Algebr. Geom., Volume 3 (2016) no. 5, pp. 508-542 | DOI | Zbl

[7] Robin Hartshorne Stable Reflexive Sheaves, Math. Ann., Volume 254 (1980), pp. 121-176 | DOI | Zbl

[8] Milena Hering; Benjamin Nill; Hendrik Süss Stability of tangent bundles on smooth toric Picard-rank-2 varieties and surfaces, London Mathematical Society Lecture Note Series, 473, Cambridge University Press (2022), pp. 1-25 | Zbl

[9] Shigeru Iitaka Logarithmic forms of algebraic varieties, J. Fac. Sci., Univ. Tokyo, Sect. I A, Volume 23 (1976), pp. 525-544 | Zbl

[10] Nathan Ilten; Hendrik Suess Equivariant vector bundles on T-varieties, Transform. Groups, Volume 20 (2015) no. 4, pp. 1043-1073 | DOI | Zbl

[11] Yujiro Kawamata On deformations of compactifiable complex manifolds, Math. Ann., Volume 235 (1978), pp. 247-265 | DOI | Zbl

[12] Peter Kleinschmidt A classification of toric varieties with few generators, Aequationes Math., Volume 35 (1988), pp. 254-266 | DOI | Zbl

[13] Alexander Klyachko Equivariant bundle on toral varieties, Math. USSR, Izv., Volume 35 (1990) no. 2, pp. 337-375 | DOI | Zbl

[14] Martijn Kool Fixed point loci of moduli spaces of sheaves on toric varieties, Adv. Math., Volume 227 (2011) no. 4, pp. 1700-1755 | DOI | Zbl

[15] Chi Li On the stability of extensions of tangent sheaves on Kähler–Einstein Fano/ Calabi–Yau pairs, Math. Ann., Volume 381 (2020) no. 3-4, pp. 1943-1977 | Zbl

[16] Hironobu Maeda Classification of logarithmic Fano threefolds, Compos. Math., Volume 57 (1986) no. 1, pp. 81-125 | Numdam | Zbl

[17] David Mumford Projective Invariants of Projective Structures and Applications, Proc. Int. Congr. Math., Volume 1962 (1963), pp. 526-530 | Zbl

[18] Achim Napame Classification of log smooth toric del Pezzo pairs (2022) | arXiv

[19] Markus Perling Graded Rings and Equivariant Sheaves on Toric Varieties, Math. Nachr., Volume 263-264 (2004), pp. 181-197 | DOI | Zbl

[20] Kyoji Saito On the Uniformization of Complements of Discriminant Loci, Am. Math. Soc. Summer Institute (1977), pp. 117-137

[21] Fumio Takemoto Stable vector bundles on algebraic surfaces, Nagoya Math. J., Volume 47 (1972), pp. 29-48 | DOI | Zbl

Cited by Sources: