Given a noncompact spin manifold with a fixed topological spin structure and two complete Riemannian metrics and on with bounded sectional curvatures, we prove a criterion for the existence and completeness of the wave operators and , where is the canonically given unitary map between the underlying -spaces of spinors. This criterion does not involve any injectivity radius assumptions and leads to a criterion for the stability of the absolutely continuous spectrum of a Dirac operator and its square under a Ricci flow.
Étant donné une variété spin non-compacte avec une structure spinorielle topologique fixée et deux métriques riemanniennes complètes et sur à courbures sectionnelles bornées, nous prouvons un critère d’existence et de complétude des opérateurs d’onde et , où est l’application unitaire canoniquement donnée entre les espaces de spineurs sous-jacents. Ce critère ne requiert aucune hypothèse de rayon d’injectivité et amène à un critère de stabilité du spectre absolument continu d’un opérateur de Dirac et de son carré sous un flot de Ricci.
Accepted:
Published online:
Sebastian Boldt 1; Batu Güneysu 1
@article{AFST_2024_6_33_3_785_0, author = {Sebastian Boldt and Batu G\"uneysu}, title = {Scattering {Theory} and {Spectral} {Stability} under a {Ricci} {Flow} for {Dirac} {Operators}}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {785--829}, publisher = {Universit\'e Paul Sabatier, Toulouse}, volume = {Ser. 6, 33}, number = {3}, year = {2024}, doi = {10.5802/afst.1787}, language = {en}, url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1787/} }
TY - JOUR AU - Sebastian Boldt AU - Batu Güneysu TI - Scattering Theory and Spectral Stability under a Ricci Flow for Dirac Operators JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2024 SP - 785 EP - 829 VL - 33 IS - 3 PB - Université Paul Sabatier, Toulouse UR - https://afst.centre-mersenne.org/articles/10.5802/afst.1787/ DO - 10.5802/afst.1787 LA - en ID - AFST_2024_6_33_3_785_0 ER -
%0 Journal Article %A Sebastian Boldt %A Batu Güneysu %T Scattering Theory and Spectral Stability under a Ricci Flow for Dirac Operators %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2024 %P 785-829 %V 33 %N 3 %I Université Paul Sabatier, Toulouse %U https://afst.centre-mersenne.org/articles/10.5802/afst.1787/ %R 10.5802/afst.1787 %G en %F AFST_2024_6_33_3_785_0
Sebastian Boldt; Batu Güneysu. Scattering Theory and Spectral Stability under a Ricci Flow for Dirac Operators. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 33 (2024) no. 3, pp. 785-829. doi : 10.5802/afst.1787. https://afst.centre-mersenne.org/articles/10.5802/afst.1787/
[1] The Dirac operator on hyperbolic manifolds of finite volume, J. Differ. Geom., Volume 54 (2000) no. 3, pp. 439-488 | Zbl
[2] Scattering Theory for the Hodge Laplacian, J. Geom. Anal., Volume 32 (2022) no. 5, 150, 52 pages | Zbl
[3] Scattering theory of the Hodge Laplacian under a conformal perturbation, J. Spectr. Theory, Volume 7 (2017) no. 1, pp. 235-267 | Zbl
[4] Spineurs, opérateurs de Dirac et variations de métriques, Commun. Math. Phys., Volume 144 (1992) no. 3, pp. 581-599 | DOI | Zbl
[5] The spectrum of the Dirac operator on the hyperbolic space, Math. Nachr., Volume 153 (1991), pp. 179-190 | DOI | Zbl
[6] Heat equation derivative formulas for vector bundles, J. Funct. Anal., Volume 183 (2001) no. 1, pp. 42-108 | DOI | Zbl
[7] Global Analysis on Open Manifolds, Nova Science Publishers, 2007, x+644 pages
[8] Dirac operators in Riemannian geometry, Graduate Studies in Mathematics, 25, American Mathematical Society, 2000 | Zbl
[9] Covariant Schrödinger semigroups on Riemannian manifolds, Operator Theory: Advances and Applications, 264, Birkhäuser/Springer, 2017, xviii+239 pages
[10] Scattering theory without injectivity radius assumptions, and spectral stability for the Ricci flow, Ann. Inst. Fourier, Volume 70 (2020) no. 1, pp. 437-456 | DOI | Numdam | Zbl
[11] On open scattering channels for manifolds with ends, J. Funct. Anal., Volume 266 (2014) no. 9, pp. 5526-5583 | DOI | Zbl
[12] Stochastic analysis on manifolds, Graduate Studies in Mathematics, 38, American Mathematical Society, 2002, xiv+281 pages
[13] Stochastic differential equations and diffusion processes, North-Holland Mathematical Library, 24, North-Holland, 1989, xvi+555 pages | Zbl
[14] Spin geometry, Princeton Mathematical Series, 38, Princeton University Press, 1989, xii+427 pages
[15] Extremal metrics for spectral functions of Dirac operators in even and odd dimensions, Adv. Math., Volume 229 (2012) no. 2, pp. 1001-1046 | DOI | Zbl
[16] On the Burkholder–Davis–Gundy inequalities for continuous martingales, Stat. Probab. Lett., Volume 78 (2008) no. 17, pp. 3034-3039 | Zbl
[17] Deforming the metric on complete Riemannian manifolds, J. Differ. Geom., Volume 30 (1989) no. 1, pp. 223-301 | Zbl
[18] Gradient estimates for harmonic functions on regular domains in Riemannian manifolds, J. Funct. Anal., Volume 155 (1998) no. 1, pp. 109-124 | DOI | Zbl
[19] Lectures on the Ricci flow, London Mathematical Society Lecture Note Series, 325, London Mathematical Society, 2006, x+113 pages | DOI
Cited by Sources: