We introduce and systematically study a profile function whose asymptotic behaviour quantifies the dimension or the size of a metric approximation of a finitely generated group by a family of groups where each group is equipped with a bi-invariant metric and a dimension , for strictly positive real numbers such that . Through the notion of a residually amenable profile that we introduce, our approach generalises classical isoperimetric (aka Følner) profiles of amenable groups and recently introduced functions quantifying residually finite groups. Our viewpoint is much more general and covers hyperlinear and sofic approximations as well as many other metric approximations such as weakly sofic, weakly hyperlinear, and linear sofic approximations.
Accepted:
Published online:
Keywords: Residually finite groups, sofic and hyperlinear groups, metric ultraproducts, amenable groups, full residual finiteness growth, Følner function.
Goulnara Arzhantseva 1; Pierre-Alain Cherix 2
@article{AFST_2024_6_33_3_831_0, author = {Goulnara Arzhantseva and Pierre-Alain Cherix}, title = {Quantifying metric approximations of discrete groups}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {831--877}, publisher = {Universit\'e Paul Sabatier, Toulouse}, volume = {Ser. 6, 33}, number = {3}, year = {2024}, doi = {10.5802/afst.1788}, language = {en}, url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1788/} }
TY - JOUR AU - Goulnara Arzhantseva AU - Pierre-Alain Cherix TI - Quantifying metric approximations of discrete groups JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2024 SP - 831 EP - 877 VL - 33 IS - 3 PB - Université Paul Sabatier, Toulouse UR - https://afst.centre-mersenne.org/articles/10.5802/afst.1788/ DO - 10.5802/afst.1788 LA - en ID - AFST_2024_6_33_3_831_0 ER -
%0 Journal Article %A Goulnara Arzhantseva %A Pierre-Alain Cherix %T Quantifying metric approximations of discrete groups %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2024 %P 831-877 %V 33 %N 3 %I Université Paul Sabatier, Toulouse %U https://afst.centre-mersenne.org/articles/10.5802/afst.1788/ %R 10.5802/afst.1788 %G en %F AFST_2024_6_33_3_831_0
Goulnara Arzhantseva; Pierre-Alain Cherix. Quantifying metric approximations of discrete groups. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 33 (2024) no. 3, pp. 831-877. doi : 10.5802/afst.1788. https://afst.centre-mersenne.org/articles/10.5802/afst.1788/
[1] Asymptotic approximations of finitely generated groups, Research Perspectives CRM Barcelona-Fall 2012 (Trends in Mathematics), Volume 1, Birkhäuser, 2014, pp. 7-16
[2] Almost commuting permutations are near commuting permutations, J. Funct. Anal., Volume 269 (2015) no. 3, pp. 745-757 (Accessed 2016-01-23) | DOI | Zbl
[3] Linear sofic groups and algebras, Trans. Am. Math. Soc., Volume 369 (2017), pp. 2285-2310 | DOI | Zbl
[4] Constraint metric approximations and equations in groups, J. Algebra, Volume 516 (2018), pp. 329-351 | DOI | Zbl
[5] The degree of polynomial growth of finitely generated nilpotent groups, Proc. Lond. Math. Soc., Volume 25 (1972), pp. 603-614 | DOI | Zbl
[6] Stability and invariant random subgroups, Duke Math. J., Volume 168 (2019) no. 12, pp. 2207-2234 | DOI | MR | Zbl
[7] Model theory for metric structures, Model theory with applications to algebra and analysis. Vol. 2 (London Mathematical Society Lecture Note Series), Volume 350, Cambridge University Press, 2008, pp. 315-427 (Accessed 2014-04-07) | Zbl
[8] New residually amenable groups, permanence properties, and metric approximations, Ph. D. Thesis, University of Vienna (2016)
[9] Quantifying residual finiteness, J. Algebra, Volume 323 (2010) no. 3, pp. 729-737 (Accessed 2015-08-27) | DOI | Zbl
[10] Systolic growth of linear groups, Proc. Am. Math. Soc., Volume 144 (2016) no. 2, pp. 529-533 | DOI | MR | Zbl
[11] Residual finiteness growths of virtually special groups, Math. Z., Volume 279 (2014) no. 1-2, pp. 297-310 (Accessed 2015-08-27) | DOI | Zbl
[12] Asymptotic growth and least common multiples in groups, Bull. Lond. Math. Soc., Volume 43 (2011) no. 6, pp. 1059-1068 (Accessed 2015-08-27) | DOI | Zbl
[13] Arbitrarily large residual finiteness growth, J. Reine Angew. Math., Volume 710 (2016), pp. 199-204 | DOI | MR | Zbl
[14] Full residual finiteness growths of nilpotent groups, Isr. J. Math., Volume 214 (2016) no. 1, pp. 209-233 | DOI | MR | Zbl
[15] Free entropy dimension in amalgamated free products, Proc. Lond. Math. Soc., Volume 97 (2008) no. 2, pp. 339-367 (with an appendix by Wolfgang Lück) | DOI | MR | Zbl
[16] Introduction to sofic and hyperlinear groups and Connes’ embedding conjecture, Lecture Notes in Mathematics, 2136, Springer, 2015 (Accessed 2016-01-06 with an appendix by Vladimir Pestov) | DOI
[17] Algorithms and quantifications in amenable and sofic groups, Ph. D. Thesis, Universita degli studi di Roma La Sapienza (2016)
[18] Cellular automata and groups, Springer Monographs in Mathematics, Springer, 2010 (Accessed 2014-11-07) | DOI
[19] Sofic profile and computability of Cremona groups, Mich. Math. J., Volume 62 (2013) no. 4, pp. 823-841 | Zbl
[20] Isometric group actions on Hilbert spaces: growth of cocycles, Geom. Funct. Anal., Volume 17 (2007) no. 3, pp. 770-792 (Accessed 2016-08-28) | DOI | Zbl
[21] Sofic dimension for discrete measured groupoids, Trans. Am. Math. Soc., Volume 366 (2014) no. 2, pp. 707-748 | DOI | MR | Zbl
[22] Almost commuting matrices with respect to the rank metric, Groups Geom. Dyn., Volume 15 (2021) no. 3, pp. 1059-1083 | DOI | MR | Zbl
[23] Sofic groups and direct finiteness, J. Algebra, Volume 280 (2004) no. 2, pp. 426-434 (Accessed 2014-03-09) | DOI | Zbl
[24] On sofic groups, J. Group Theory, Volume 9 (2006) no. 2, pp. 161-171 (Accessed 2014-03-09) | Zbl
[25] On approximation of groups: weak soficity and weak hyperlinearity (2013) (in preparation)
[26] Almost commuting matrices with respect to normalized Hilbert-Schmidt norm (2010) | arXiv
[27] Approximations of groups, characterizations of sofic groups, and equations over groups, J. Algebra, Volume 477 (2017), pp. 147-162 | DOI | MR | Zbl
[28] Sofic groups and profinite topology on free groups, J. Algebra, Volume 320 (2008) no. 9, pp. 3512-3518 | DOI | MR | Zbl
[29] Groups of polynomial growth and expanding maps, Publ. Math., Inst. Hautes Étud. Sci., Volume 53 (1981), pp. 53-73 (Accessed 2016-01-23) | DOI | Numdam | Zbl
[30] Asymptotic invariants of infinite groups, Geometric group theory, Vol. 2 (Sussex, 1991) (London Mathematical Society Lecture Note Series), Volume 182, Cambridge University Press, 1993, pp. 1-295 (Accessed 2015-12-12) | Zbl
[31] Endomorphisms of symbolic algebraic varieties, J. Eur. Math. Soc., Volume 1 (1999) no. 2, pp. 109-197 (Accessed 2013-11-03) | DOI | Zbl
[32] Croissance polynomiale et périodes des fonctions harmoniques, Bull. Soc. Math. Fr., Volume 101 (1973), pp. 333-379 | DOI | Numdam | Zbl
[33] Stability of group relations under small Hilbert-Schmidt perturbations, J. Funct. Anal., Volume 275 (2018) no. 4, pp. 761-792 | DOI | MR | Zbl
[34] Metric approximations of wreath products, Ann. Inst. Fourier, Volume 68 (2018) no. 1, pp. 423-455 | DOI | Numdam | MR | Zbl
[35] Some closure results for -approximable groups, Pac. J. Math., Volume 287 (2017) no. 2, pp. 393-409 | DOI | MR | Zbl
[36] On isomorphic matrix representations of infinite groups, Mat. Sb., N. Ser., Volume 8 (50) (1940), pp. 405-422 | MR | Zbl
[37] Fast growth in the Følner function for Thompson’s group , Groups Geom. Dyn., Volume 7 (2013) no. 3, pp. 633-651 (Accessed 2016-01-23) | DOI | Zbl
[38] Hyperlinear and sofic groups: A brief guide, Bull. Symb. Log., Volume 14 (2008) no. 04, pp. 449-480 | DOI | Zbl
[39] An introduction to hyperlinear and sofic groups, Appalachian Set Theory 2006-2012 (London Mathematical Society Lecture Note Series), Volume 406, Cambridge University Press, 2012, pp. 145-185 | DOI | Zbl
[40] Free-independent sequences in type factors and related problems, Recent advances in operator algebras (Orléans, 1992) (Astérisque), Volume 232, Société Mathématique de France, 1995, pp. 187-202 | MR | Zbl
[41] The von Neumann algebra of the non-residually finite Baumslag group embeds into , Hot topics in operator theory (Theta Series in Advanced Mathematics), Volume 9, Theta, 2008, pp. 173-185 (Accessed 2016-09-04) | Zbl
[42] -free groups, Sib. Mat. Zh., Volume 30 (1989) no. 6, pp. 193-197
[43] Polycyclic groups, Cambridge Tracts in Mathematics, 82, Cambridge University Press, 1983, xiv+289 pages | DOI | MR
[44] Entanglement in non-local games and the hyperlinear profile of groups, Ann. Henri Poincaré, Volume 19 (2018) no. 10, pp. 2979-3005 | DOI | MR | Zbl
[45] Properties of Linearly Sofic Groups (2013) | arXiv
[46] About the metric approximation of Higman’s group, J. Group Theory, Volume 15 (2012) no. 2, pp. 301-310 (Accessed 2014-11-07) | DOI | Zbl
[47] Amenability and approximation of infinite groups, Sel. Math. Sov., Volume 2 (1982) no. 4, pp. 311-330 | MR | Zbl
[48] Groups that are locally embeddable in the class of finite groups, Algebra Anal., Volume 9 (1997) no. 1, pp. 71-97 | MR | Zbl
[49] A strengthened asymptotic freeness result for random matrices with applications to free entropy, Int. Math. Res. Not., Volume 1998 (1998) no. 1, pp. 41-63 | DOI | MR | Zbl
[50] Sofic groups and dynamical systems, Sankhyā, Ser. A, Volume 62 (2000) no. 3, pp. 350-359 Accessed 2013-11-03 Ergodic theory and harmonic analysis (Mumbai, 1999) | Zbl
[51] Growth of finitely generated solvable groups and curvature of Riemannian manifolds, J. Differ. Geom., Volume 2 (1968), pp. 421-446 | MR | Zbl
Cited by Sources: