Dunkl connections on 2 and spherical metrics
Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 33 (2024) no. 4, pp. 937-979.

Nous démontrons que les connexions Dunkl génériques sur 2 ne préservent pas les formes hermitiennes non nulles. Notre preuve repose sur une compréhension récente de la topologie non triviale de l’espace de modules des tores sphériques avec un point conique.

We show that general Dunkl connections on 2 do not preserve non-zero Hermitian forms. Our proof relies on recent understanding of the non-trivial topology of the moduli space of spherical tori with one conical point.

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/afst.1791

Martin de Borbon 1 ; Dmitri Panov 2

1 The University of Texas at Dallas, Department of Mathematics, Richardson, TX 75080, United States
2 King’s College London, Department of Mathematics, Strand, London, WC2R 2LS, United Kingdom
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{AFST_2024_6_33_4_937_0,
     author = {Martin de Borbon and Dmitri Panov},
     title = {Dunkl connections on $\mathbb{C}^2$ and spherical metrics},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     pages = {937--979},
     publisher = {Universit\'e Paul Sabatier, Toulouse},
     volume = {Ser. 6, 33},
     number = {4},
     year = {2024},
     doi = {10.5802/afst.1791},
     language = {en},
     url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1791/}
}
TY  - JOUR
AU  - Martin de Borbon
AU  - Dmitri Panov
TI  - Dunkl connections on $\mathbb{C}^2$ and spherical metrics
JO  - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY  - 2024
SP  - 937
EP  - 979
VL  - 33
IS  - 4
PB  - Université Paul Sabatier, Toulouse
UR  - https://afst.centre-mersenne.org/articles/10.5802/afst.1791/
DO  - 10.5802/afst.1791
LA  - en
ID  - AFST_2024_6_33_4_937_0
ER  - 
%0 Journal Article
%A Martin de Borbon
%A Dmitri Panov
%T Dunkl connections on $\mathbb{C}^2$ and spherical metrics
%J Annales de la Faculté des sciences de Toulouse : Mathématiques
%D 2024
%P 937-979
%V 33
%N 4
%I Université Paul Sabatier, Toulouse
%U https://afst.centre-mersenne.org/articles/10.5802/afst.1791/
%R 10.5802/afst.1791
%G en
%F AFST_2024_6_33_4_937_0
Martin de Borbon; Dmitri Panov. Dunkl connections on $\mathbb{C}^2$ and spherical metrics. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 33 (2024) no. 4, pp. 937-979. doi : 10.5802/afst.1791. https://afst.centre-mersenne.org/articles/10.5802/afst.1791/

[1] Frits Beukers Gauss’ hypergeometric function, Arithmetic and geometry around hypergeometric functions (Progress in Mathematics), Volume 260, Birkhäuser, 2007, pp. 23-42 | DOI | MR | Zbl

[2] Martin de Borbon; Dmitri Panov Polyhedral Kähler cone metrics on n singular at hyperplane arrangements (2021) | arXiv

[3] Martin R. Bridson; André Haefliger Metric spaces of non-positive curvature, Grundlehren der Mathematischen Wissenschaften, 319, Springer, 1999, xxii+643 pages | DOI | MR

[4] Wim Couwenberg; Gert Heckman; Eduard Looijenga Geometric structures on the complement of a projective arrangement, Publ. Math., Inst. Hautes Étud. Sci., Volume 101 (2005), pp. 69-161 | DOI | Numdam | MR | Zbl

[5] Simon Donaldson Riemann surfaces, Oxford Graduate Texts in Mathematics, 22, Oxford University Press, 2011, xiv+286 pages | DOI | MR

[6] Alexandre Eremenko; Gabriele Mondello; Dmitri Panov Moduli of spherical tori with one conical point (2020) (to appear in Geom. Topol.) | arXiv

[7] Daniel Gallo; Michael Kapovich; Albert Marden The monodromy groups of Schwarzian equations on closed Riemann surfaces, Ann. Math., Volume 151 (2000) no. 2, pp. 625-704 | DOI | MR | Zbl

[8] Yulij Ilyashenko; Sergei Yakovenko Lectures on analytic differential equations, Graduate Studies in Mathematics, 86, American Mathematical Society, 2008, xiv+625 pages | DOI | MR

[9] Michael Kapovich; Bernhard Leeb; John Millson Convex functions on symmetric spaces, side lengths of polygons and the stability inequalities for weighted configurations at infinity, J. Differ. Geom., Volume 81 (2009) no. 2, pp. 297-354 | MR | Zbl

[10] Feng Luo; Gang Tian Liouville equation and spherical convex polytopes, Proc. Am. Math. Soc., Volume 116 (1992) no. 4, pp. 1119-1129 | DOI | MR | Zbl

[11] Gabriele Mondello; Dmitri Panov On the moduli space of spherical surfaces with conical points (in preparation)

[12] Gabriele Mondello; Dmitri Panov Spherical surfaces with conical points: systole inequality and moduli spaces with many connected components, Geom. Funct. Anal., Volume 29 (2019) no. 4, pp. 1110-1193 | DOI | MR | Zbl

[13] Dmitri Panov Polyhedral Kähler manifolds, Geom. Topol., Volume 13 (2009) no. 4, pp. 2205-2252 | DOI | MR | Zbl

[14] Richard P. Thomas Notes on GIT and symplectic reduction for bundles and varieties, Essays in geometry in memory of S. S. Chern (Surveys in Differential Geometry), Volume 10, International Press, 2006, pp. 221-273 | DOI | MR | Zbl

[15] William P. Thurston Three-dimensional geometry and topology. Vol. 1, Princeton Mathematical Series, 35, Princeton University Press, 1997, x+311 pages | DOI | MR

[16] Marc Troyanov Prescribing curvature on compact surfaces with conical singularities, Trans. Am. Math. Soc., Volume 324 (1991) no. 2, pp. 793-821 | DOI | MR | Zbl

[17] Masaaki Yoshida Fuchsian differential equations, Aspects of Mathematics, E11, Vieweg & Sohn, 1987, xiv+215 pages | DOI | MR

Cité par Sources :