Nous démontrons que les connexions Dunkl génériques sur ne préservent pas les formes hermitiennes non nulles. Notre preuve repose sur une compréhension récente de la topologie non triviale de l’espace de modules des tores sphériques avec un point conique.
We show that general Dunkl connections on do not preserve non-zero Hermitian forms. Our proof relies on recent understanding of the non-trivial topology of the moduli space of spherical tori with one conical point.
Accepté le :
Publié le :
Martin de Borbon 1 ; Dmitri Panov 2

@article{AFST_2024_6_33_4_937_0, author = {Martin de Borbon and Dmitri Panov}, title = {Dunkl connections on $\mathbb{C}^2$ and spherical metrics}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {937--979}, publisher = {Universit\'e Paul Sabatier, Toulouse}, volume = {Ser. 6, 33}, number = {4}, year = {2024}, doi = {10.5802/afst.1791}, language = {en}, url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1791/} }
TY - JOUR AU - Martin de Borbon AU - Dmitri Panov TI - Dunkl connections on $\mathbb{C}^2$ and spherical metrics JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2024 SP - 937 EP - 979 VL - 33 IS - 4 PB - Université Paul Sabatier, Toulouse UR - https://afst.centre-mersenne.org/articles/10.5802/afst.1791/ DO - 10.5802/afst.1791 LA - en ID - AFST_2024_6_33_4_937_0 ER -
%0 Journal Article %A Martin de Borbon %A Dmitri Panov %T Dunkl connections on $\mathbb{C}^2$ and spherical metrics %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2024 %P 937-979 %V 33 %N 4 %I Université Paul Sabatier, Toulouse %U https://afst.centre-mersenne.org/articles/10.5802/afst.1791/ %R 10.5802/afst.1791 %G en %F AFST_2024_6_33_4_937_0
Martin de Borbon; Dmitri Panov. Dunkl connections on $\mathbb{C}^2$ and spherical metrics. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 33 (2024) no. 4, pp. 937-979. doi : 10.5802/afst.1791. https://afst.centre-mersenne.org/articles/10.5802/afst.1791/
[1] Gauss’ hypergeometric function, Arithmetic and geometry around hypergeometric functions (Progress in Mathematics), Volume 260, Birkhäuser, 2007, pp. 23-42 | DOI | MR | Zbl
[2] Polyhedral Kähler cone metrics on singular at hyperplane arrangements (2021) | arXiv
[3] Metric spaces of non-positive curvature, Grundlehren der Mathematischen Wissenschaften, 319, Springer, 1999, xxii+643 pages | DOI | MR
[4] Geometric structures on the complement of a projective arrangement, Publ. Math., Inst. Hautes Étud. Sci., Volume 101 (2005), pp. 69-161 | DOI | Numdam | MR | Zbl
[5] Riemann surfaces, Oxford Graduate Texts in Mathematics, 22, Oxford University Press, 2011, xiv+286 pages | DOI | MR
[6] Moduli of spherical tori with one conical point (2020) (to appear in Geom. Topol.) | arXiv
[7] The monodromy groups of Schwarzian equations on closed Riemann surfaces, Ann. Math., Volume 151 (2000) no. 2, pp. 625-704 | DOI | MR | Zbl
[8] Lectures on analytic differential equations, Graduate Studies in Mathematics, 86, American Mathematical Society, 2008, xiv+625 pages | DOI | MR
[9] Convex functions on symmetric spaces, side lengths of polygons and the stability inequalities for weighted configurations at infinity, J. Differ. Geom., Volume 81 (2009) no. 2, pp. 297-354 | MR | Zbl
[10] Liouville equation and spherical convex polytopes, Proc. Am. Math. Soc., Volume 116 (1992) no. 4, pp. 1119-1129 | DOI | MR | Zbl
[11] On the moduli space of spherical surfaces with conical points (in preparation)
[12] Spherical surfaces with conical points: systole inequality and moduli spaces with many connected components, Geom. Funct. Anal., Volume 29 (2019) no. 4, pp. 1110-1193 | DOI | MR | Zbl
[13] Polyhedral Kähler manifolds, Geom. Topol., Volume 13 (2009) no. 4, pp. 2205-2252 | DOI | MR | Zbl
[14] Notes on GIT and symplectic reduction for bundles and varieties, Essays in geometry in memory of S. S. Chern (Surveys in Differential Geometry), Volume 10, International Press, 2006, pp. 221-273 | DOI | MR | Zbl
[15] Three-dimensional geometry and topology. Vol. 1, Princeton Mathematical Series, 35, Princeton University Press, 1997, x+311 pages | DOI | MR
[16] Prescribing curvature on compact surfaces with conical singularities, Trans. Am. Math. Soc., Volume 324 (1991) no. 2, pp. 793-821 | DOI | MR | Zbl
[17] Fuchsian differential equations, Aspects of Mathematics, E11, Vieweg & Sohn, 1987, xiv+215 pages | DOI | MR
Cité par Sources :