Extensions and restrictions of holomorphic foliations
Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 33 (2024) no. 4, pp. 981-995.

Nous prouvons un critère d’extension pour les feuilletages de codimension un sur les hypersurfaces projectives, basé sur le degré du feuilletage et sur le degré de l’hypersurface, et nous assurons, dans certains cas, un isomorphisme entre les espaces de feuilletages correspondants. Nous présentons également quelques exemples de feuilletages qui ne satisfont pas le critère d’extension et ne s’étendent pas.

We prove an extension criterion for codimension one foliations on projective hypersurfaces based on the degree of the foliation and the degree of the hypersurface, and we ensure, in some instances, an isomorphism between the corresponding spaces of foliations. We also present some examples of foliations that do not satisfy the extension criterion and do not extend.

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/afst.1792
Mots-clés : Restrictions of Foliations, Extensions of foliations, Smooth projective hypersurfaces.

Mateus Gomes Figueira 1

1 Instituto de Matemática Pura e Aplicada, Estrada Dona Castorina 110, 22460-320, Rio de Janeiro, RJ, Brazil.
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{AFST_2024_6_33_4_981_0,
     author = {Mateus Gomes Figueira},
     title = {Extensions and restrictions of holomorphic foliations},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     pages = {981--995},
     publisher = {Universit\'e Paul Sabatier, Toulouse},
     volume = {Ser. 6, 33},
     number = {4},
     year = {2024},
     doi = {10.5802/afst.1792},
     language = {en},
     url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1792/}
}
TY  - JOUR
AU  - Mateus Gomes Figueira
TI  - Extensions and restrictions of holomorphic foliations
JO  - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY  - 2024
SP  - 981
EP  - 995
VL  - 33
IS  - 4
PB  - Université Paul Sabatier, Toulouse
UR  - https://afst.centre-mersenne.org/articles/10.5802/afst.1792/
DO  - 10.5802/afst.1792
LA  - en
ID  - AFST_2024_6_33_4_981_0
ER  - 
%0 Journal Article
%A Mateus Gomes Figueira
%T Extensions and restrictions of holomorphic foliations
%J Annales de la Faculté des sciences de Toulouse : Mathématiques
%D 2024
%P 981-995
%V 33
%N 4
%I Université Paul Sabatier, Toulouse
%U https://afst.centre-mersenne.org/articles/10.5802/afst.1792/
%R 10.5802/afst.1792
%G en
%F AFST_2024_6_33_4_981_0
Mateus Gomes Figueira. Extensions and restrictions of holomorphic foliations. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 33 (2024) no. 4, pp. 981-995. doi : 10.5802/afst.1792. https://afst.centre-mersenne.org/articles/10.5802/afst.1792/

[1] Thiago F. Amaral Sobre a Aplicação de Gauss de Folheações Holomorfas em Espaços Projetivos, Ph. D. Thesis, Instituto Nacional de Matemática Pura e Aplicada (2008) (https://impa.br/wp-content/uploads/2017/08/tese_dout_thiago_fassarella_amaral.pdf)

[2] Carolina Araujo; Mauricio Corrêa; Alex Massarenti Codimension one Fano distributions on Fano manifolds, Commun. Contemp. Math., Volume 20 (2018) no. 5, 1750058, 28 pages | DOI | MR | Zbl

[3] Vladimiro Benedetti; Daniele Faenzi; Alan Muniz Codimension one foliations on homogeneous varieties, Adv. Math., Volume 434 (2023), 109332, 45 pages | DOI | MR | Zbl

[4] Marco Brunella; Luís Gustavo Mendes Bounding the degree of solutions to Pfaff equations, Publ. Mat., Barc., Volume 44 (2000) no. 2, pp. 593-604 | DOI | MR | Zbl

[5] Dominique Cerveau Quelques problèmes en géométrie feuilletée pour les 60 années de l’IMPA, Bull. Braz. Math. Soc. (N.S.), Volume 44 (2013) no. 4, pp. 653-679 | DOI | MR | Zbl

[6] Dominique Cerveau; Alcides Lins Neto Irreducible components of the space of holomorphic foliations of degree two in CP(n), n3, Ann. Math., Volume 143 (1996) no. 3, pp. 577-612 | DOI | MR

[7] Dominique Cerveau; A. Lins Neto Codimension two holomorphic foliation, J. Differ. Geom., Volume 113 (2019) no. 3, pp. 385-416 | DOI | MR | Zbl

[8] Raphael Constant da Costa; Ruben Lizarbe; Jorge Vitório Pereira Codimension one foliations of degree three on projective spaces, Bull. Sci. Math., Volume 174 (2022), 103092, 39 pages | DOI | MR | Zbl

[9] Julie Déserti; Dominique Cerveau Feuilletages et actions de groupes sur les espaces projectifs, Mém. Soc. Math. Fr., Nouv. Sér., Volume 103 (2005), p. vi+124 | DOI | Numdam | MR | Zbl

[10] Igor Dolgachev Weighted projective varieties, Group actions and vector fields (Vancouver, B.C., 1981) (Lecture Notes in Mathematics), Volume 956, Springer, 1982, pp. 34-71 | DOI | MR | Zbl

[11] Hubert Flenner Divisorenklassengruppen quasihomogener Singularitäten, J. Reine Angew. Math., Volume 328 (1981), pp. 128-160 http://eudml.org/doc/152399 | MR | Zbl

[12] Robin Hartshorne Ample subvarieties of algebraic varieties, Lecture Notes in Mathematics, 156, Springer, 1970, xiii+256 pages http://eudml.org/doc/203415 | DOI | MR

[13] Robin Hartshorne Algebraic geometry, Graduate Texts in Mathematics, 52, Springer, 1977, xvi+496 pages | DOI | MR

[14] Frank Loray; Jorge Vitório Pereira; Frédéric Touzet Foliations with trivial canonical bundle on Fano 3-folds, Math. Nachr., Volume 286 (2013), pp. 921-940 | DOI | MR | Zbl

[15] John W. Milnor; Michael Spivak; R. Wells Morse Theory, Annals of Mathematics Studies, 51, Princeton University Press, 1969 | MR

[16] Christian Okonek; Michael Schneider; Heinz Spindler Vector Bundles on Complex Projective Spaces, Modern Birkhäuser Classics, Birkhäuser, 1988 | DOI | MR

[17] Marcio G. Soares The Poincaré problem for hypersurfaces invariant by one-dimensional foliations, Invent. Math., Volume 128 (1997) no. 3, pp. 495-500 | DOI | MR | Zbl

[18] Evgueni A. Tevelev Projectively Dual Varieties, J. Math. Sci., New York, Volume 117 (2003) no. 6, pp. 4585-4732 | DOI | MR | Zbl

[19] Fyodor L. Zak Tangents and Secants of Algebraic Varieties, Translations of Mathematical Monographs, 127, American Mathematical Society, 1993 https://books.google.com.br/books?id=kofnawaaqbaj | MR

Cité par Sources :