Nous prouvons un critère d’extension pour les feuilletages de codimension un sur les hypersurfaces projectives, basé sur le degré du feuilletage et sur le degré de l’hypersurface, et nous assurons, dans certains cas, un isomorphisme entre les espaces de feuilletages correspondants. Nous présentons également quelques exemples de feuilletages qui ne satisfont pas le critère d’extension et ne s’étendent pas.
We prove an extension criterion for codimension one foliations on projective hypersurfaces based on the degree of the foliation and the degree of the hypersurface, and we ensure, in some instances, an isomorphism between the corresponding spaces of foliations. We also present some examples of foliations that do not satisfy the extension criterion and do not extend.
Accepté le :
Publié le :
Mateus Gomes Figueira 1

@article{AFST_2024_6_33_4_981_0, author = {Mateus Gomes Figueira}, title = {Extensions and restrictions of holomorphic foliations}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {981--995}, publisher = {Universit\'e Paul Sabatier, Toulouse}, volume = {Ser. 6, 33}, number = {4}, year = {2024}, doi = {10.5802/afst.1792}, language = {en}, url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1792/} }
TY - JOUR AU - Mateus Gomes Figueira TI - Extensions and restrictions of holomorphic foliations JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2024 SP - 981 EP - 995 VL - 33 IS - 4 PB - Université Paul Sabatier, Toulouse UR - https://afst.centre-mersenne.org/articles/10.5802/afst.1792/ DO - 10.5802/afst.1792 LA - en ID - AFST_2024_6_33_4_981_0 ER -
%0 Journal Article %A Mateus Gomes Figueira %T Extensions and restrictions of holomorphic foliations %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2024 %P 981-995 %V 33 %N 4 %I Université Paul Sabatier, Toulouse %U https://afst.centre-mersenne.org/articles/10.5802/afst.1792/ %R 10.5802/afst.1792 %G en %F AFST_2024_6_33_4_981_0
Mateus Gomes Figueira. Extensions and restrictions of holomorphic foliations. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 33 (2024) no. 4, pp. 981-995. doi : 10.5802/afst.1792. https://afst.centre-mersenne.org/articles/10.5802/afst.1792/
[1] Sobre a Aplicação de Gauss de Folheações Holomorfas em Espaços Projetivos, Ph. D. Thesis, Instituto Nacional de Matemática Pura e Aplicada (2008) (https://impa.br/wp-content/uploads/2017/08/tese_dout_thiago_fassarella_amaral.pdf)
[2] Codimension one Fano distributions on Fano manifolds, Commun. Contemp. Math., Volume 20 (2018) no. 5, 1750058, 28 pages | DOI | MR | Zbl
[3] Codimension one foliations on homogeneous varieties, Adv. Math., Volume 434 (2023), 109332, 45 pages | DOI | MR | Zbl
[4] Bounding the degree of solutions to Pfaff equations, Publ. Mat., Barc., Volume 44 (2000) no. 2, pp. 593-604 | DOI | MR | Zbl
[5] Quelques problèmes en géométrie feuilletée pour les 60 années de l’IMPA, Bull. Braz. Math. Soc. (N.S.), Volume 44 (2013) no. 4, pp. 653-679 | DOI | MR | Zbl
[6] Irreducible components of the space of holomorphic foliations of degree two in , , Ann. Math., Volume 143 (1996) no. 3, pp. 577-612 | DOI | MR
[7] Codimension two holomorphic foliation, J. Differ. Geom., Volume 113 (2019) no. 3, pp. 385-416 | DOI | MR | Zbl
[8] Codimension one foliations of degree three on projective spaces, Bull. Sci. Math., Volume 174 (2022), 103092, 39 pages | DOI | MR | Zbl
[9] Feuilletages et actions de groupes sur les espaces projectifs, Mém. Soc. Math. Fr., Nouv. Sér., Volume 103 (2005), p. vi+124 | DOI | Numdam | MR | Zbl
[10] Weighted projective varieties, Group actions and vector fields (Vancouver, B.C., 1981) (Lecture Notes in Mathematics), Volume 956, Springer, 1982, pp. 34-71 | DOI | MR | Zbl
[11] Divisorenklassengruppen quasihomogener Singularitäten, J. Reine Angew. Math., Volume 328 (1981), pp. 128-160 http://eudml.org/doc/152399 | MR | Zbl
[12] Ample subvarieties of algebraic varieties, Lecture Notes in Mathematics, 156, Springer, 1970, xiii+256 pages http://eudml.org/doc/203415 | DOI | MR
[13] Algebraic geometry, Graduate Texts in Mathematics, 52, Springer, 1977, xvi+496 pages | DOI | MR
[14] Foliations with trivial canonical bundle on Fano 3-folds, Math. Nachr., Volume 286 (2013), pp. 921-940 | DOI | MR | Zbl
[15] Morse Theory, Annals of Mathematics Studies, 51, Princeton University Press, 1969 | MR
[16] Vector Bundles on Complex Projective Spaces, Modern Birkhäuser Classics, Birkhäuser, 1988 | DOI | MR
[17] The Poincaré problem for hypersurfaces invariant by one-dimensional foliations, Invent. Math., Volume 128 (1997) no. 3, pp. 495-500 | DOI | MR | Zbl
[18] Projectively Dual Varieties, J. Math. Sci., New York, Volume 117 (2003) no. 6, pp. 4585-4732 | DOI | MR | Zbl
[19] Tangents and Secants of Algebraic Varieties, Translations of Mathematical Monographs, 127, American Mathematical Society, 1993 https://books.google.com.br/books?id=kofnawaaqbaj | MR
Cité par Sources :