Dans cet article, nous étudions les systoles des variétés hyperboliques arithmétiques en dimension et . Notre premier résultat est la construction d’une infinité de variétés hyperboliques arithmétiques qui sont incommensurables deux-à-deux, ont toutes la même systole, et dont les volumes sont explicitement bornés. Notre deuxième résultat suppose fixé et donne une borne supérieure pour le plus petit volume d’une variété hyperbolique arithmétique avec une systole supérieure à . Nous concluons en déterminant, pour certaines petites valeurs de , le plus petit volume d’une variété hyperbolique arithmétique principale sur (en dimension ) ou sur (en dimension ) avec une systole supérieure à .
In this paper we study the systoles of arithmetic hyperbolic - and -manifolds. Our first result is the construction of infinitely many arithmetic hyperbolic - and -manifolds which are pairwise noncommensurable, all have the same systole, and whose volumes are explicitly bounded. Our second result fixes a positive number and gives an upper bound for the least volume of an arithmetic hyperbolic - or -manifold whose systole is greater than . We conclude by determining, for certain small values of , the least volume of a principal arithmetic hyperbolic -manifold over or -manifold over whose systole is greater than .
Accepté le :
Publié le :
Rainie Bozzai 1 ; Benjamin Linowitz 2

@article{AFST_2024_6_33_4_997_0, author = {Rainie Bozzai and Benjamin Linowitz}, title = {Systoles of {Arithmetic} {Hyperbolic} 2- and {3-Manifolds}}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {997--1017}, publisher = {Universit\'e Paul Sabatier, Toulouse}, volume = {Ser. 6, 33}, number = {4}, year = {2024}, doi = {10.5802/afst.1793}, language = {en}, url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1793/} }
TY - JOUR AU - Rainie Bozzai AU - Benjamin Linowitz TI - Systoles of Arithmetic Hyperbolic 2- and 3-Manifolds JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2024 SP - 997 EP - 1017 VL - 33 IS - 4 PB - Université Paul Sabatier, Toulouse UR - https://afst.centre-mersenne.org/articles/10.5802/afst.1793/ DO - 10.5802/afst.1793 LA - en ID - AFST_2024_6_33_4_997_0 ER -
%0 Journal Article %A Rainie Bozzai %A Benjamin Linowitz %T Systoles of Arithmetic Hyperbolic 2- and 3-Manifolds %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2024 %P 997-1017 %V 33 %N 4 %I Université Paul Sabatier, Toulouse %U https://afst.centre-mersenne.org/articles/10.5802/afst.1793/ %R 10.5802/afst.1793 %G en %F AFST_2024_6_33_4_997_0
Rainie Bozzai; Benjamin Linowitz. Systoles of Arithmetic Hyperbolic 2- and 3-Manifolds. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 33 (2024) no. 4, pp. 997-1017. doi : 10.5802/afst.1793. https://afst.centre-mersenne.org/articles/10.5802/afst.1793/
[1] An embedding theorem for quaternion algebras, J. Lond. Math. Soc., Volume 60 (1999) no. 1, pp. 33-44 | DOI | MR | Zbl
[2] The arithmetic hyperbolic 3-manifold of smallest volume, Ann. Sc. Norm. Super. Pisa, Cl. Sci., Volume 30 (2001) no. 1, pp. 1-40 | Numdam | MR | Zbl
[3] Geodesics and commensurability classes of arithmetic hyperbolic 3–manifolds, Duke Math. J., Volume 145 (2008) no. 1, pp. 25-44 | Zbl
[4] Constructing complete tables of quartic fields using Kummer theory, Math. Comput., Volume 72 (2003) no. 242, pp. 941-951 | DOI | MR | Zbl
[5] The spectrum of positive elliptic operators and periodic bicharacteristics, Invent. Math., Volume 29 (1975), pp. 39-79 | DOI | MR | Zbl
[6] Spectra of compact locally symmetric manifolds of negative curvature, Invent. Math., Volume 52 (1979) no. 1, pp. 27-93 | DOI | MR | Zbl
[7] Beweis eines satzes von tschebyschef, Acta Szeged, Volume 5 (1932), pp. 194-198 | Zbl
[8] Homotopy type and homology versus volume for arithmetic locally symmetric spaces (2022) | arXiv
[9] Spectrally similar incommensurable 3-manifolds, Proc. Lond. Math. Soc., Volume 115 (2017) no. 2, pp. 411-447 | DOI | MR | Zbl
[10] A note on the least prime that splits completely in a nonabelian Galois number field, Math. Z., Volume 292 (2019) no. 1-2, pp. 183-192 | MR | Zbl
[11] Homotopy type and volume of locally symmetric manifolds, Duke Math. J., Volume 124 (2004) no. 3, pp. 459-515 | MR | Zbl
[12] An investigation of bounds for the regulator of quadratic fields, Exp. Math., Volume 4 (1995) no. 3, pp. 211-225 | DOI | MR | Zbl
[13] A bound for the least prime ideal in the Chebotarev density theorem, Invent. Math., Volume 54 (1979), pp. 271-296 | DOI | MR | Zbl
[14] Effective versions of the Chebotarev density theorem, Algebraic number fields: -functions and Galois properties (Proc. Sympos., Univ. Durham, Durham, 1975), Academic Press Inc., 1975, pp. 409-464 | MR | Zbl
[15] Systoles of arithmetic hyperbolic surfaces and 3-manifolds, Math. Res. Lett., Volume 24 (2017) no. 5, pp. 1497-1522 | DOI | MR | Zbl
[16] Counting and effective rigidity in algebra and geometry, Invent. Math., Volume 213 (2018) no. 2, pp. 697-758 | DOI | MR | Zbl
[17] The Arithmetic of Hyperbolic 3–Manifolds, Graduate Texts in Mathematics, 219, Springer, 2003, xiii+463 pages | DOI | MR | Zbl
[18] Mutations and short geodesics in hyperbolic 3-manifolds, Commun. Anal. Geom., Volume 25 (2017) no. 3, pp. 625-683 | DOI | MR | Zbl
[19] An effective Chebotarev density theorem for families of number fields, with an application to -torsion in class groups, Invent. Math., Volume 219 (2020) no. 2, pp. 701-778 | DOI | MR | Zbl
[20] The smallest prime that splits completely in an abelian number field, Proc. Am. Math. Soc., Volume 142 (2014) no. 6, pp. 1925-1934 | DOI | MR | Zbl
[21] Volumes of -arithmetic quotients of semi-simple groups, Publ. Math., Inst. Hautes Étud. Sci., Volume 69 (1989), pp. 91-117 (with an appendix by Moshe Jarden and the author) | DOI | Numdam | MR | Zbl
[22] Weakly commensurable arithmetic groups and isospectral locally symmetric spaces, Publ. Math., Inst. Hautes Étud. Sci., Volume 109 (2009), pp. 113-184 | DOI | Numdam | MR | Zbl
[23] Isospectrality and commensurability of arithmetic hyperbolic - and -manifolds, Duke Math. J., Volume 65 (1992) no. 2, pp. 215-228 | MR | Zbl
[24] SageMath, the Sage Mathematics Software System (Version 9.4), 2021 (http://www.sagemath.org/)
[25] Diskriminanten, -Ganzheitsbasen und relative Ganzheitsbasen bei multiquadratischen Zahlkörpern, Arch. Math., Volume 52 (1989) no. 3, pp. 245-257 | DOI | Zbl
[26] Lower bounds for height functions, Duke Math. J., Volume 51 (1984), pp. 395-403 | MR | Zbl
[27] Quaternion Algebras, Graduate Texts in Mathematics, 288, Springer, 2021, xxiii+885 pages | DOI | MR | Zbl
[28] An effective version of the Grunwald–Wang theorem, Ph. D. Thesis, Caltech (2001)
[29] On the least prime in an arithmetic progression and estimates for the zeros of Dirichlet -functions, Acta Arith., Volume 150 (2011) no. 1, pp. 65-91 | DOI | MR | Zbl
Cité par Sources :