Systoles of Arithmetic Hyperbolic 2- and 3-Manifolds
Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 33 (2024) no. 4, pp. 997-1017.

Dans cet article, nous étudions les systoles des variétés hyperboliques arithmétiques en dimension 2 et 3. Notre premier résultat est la construction d’une infinité de variétés hyperboliques arithmétiques qui sont incommensurables deux-à-deux, ont toutes la même systole, et dont les volumes sont explicitement bornés. Notre deuxième résultat suppose fixé x>0 et donne une borne supérieure pour le plus petit volume d’une variété hyperbolique arithmétique avec une systole supérieure à x. Nous concluons en déterminant, pour certaines petites valeurs de x, le plus petit volume d’une variété hyperbolique arithmétique principale sur (en dimension 2) ou sur (i) (en dimension 3) avec une systole supérieure à x.

In this paper we study the systoles of arithmetic hyperbolic 2- and 3-manifolds. Our first result is the construction of infinitely many arithmetic hyperbolic 2- and 3-manifolds which are pairwise noncommensurable, all have the same systole, and whose volumes are explicitly bounded. Our second result fixes a positive number x and gives an upper bound for the least volume of an arithmetic hyperbolic 2- or 3-manifold whose systole is greater than x. We conclude by determining, for certain small values of x, the least volume of a principal arithmetic hyperbolic 2-manifold over or 3-manifold over (i) whose systole is greater than x.

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/afst.1793

Rainie Bozzai 1 ; Benjamin Linowitz 2

1 Department of Mathematics, University of Washington, Box 354350, Seattle, WA 98195
2 Department of Mathematics, 10 North Professor Street, Oberlin, OH 44074
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{AFST_2024_6_33_4_997_0,
     author = {Rainie Bozzai and Benjamin Linowitz},
     title = {Systoles of {Arithmetic} {Hyperbolic} 2- and {3-Manifolds}},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     pages = {997--1017},
     publisher = {Universit\'e Paul Sabatier, Toulouse},
     volume = {Ser. 6, 33},
     number = {4},
     year = {2024},
     doi = {10.5802/afst.1793},
     language = {en},
     url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1793/}
}
TY  - JOUR
AU  - Rainie Bozzai
AU  - Benjamin Linowitz
TI  - Systoles of Arithmetic Hyperbolic 2- and 3-Manifolds
JO  - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY  - 2024
SP  - 997
EP  - 1017
VL  - 33
IS  - 4
PB  - Université Paul Sabatier, Toulouse
UR  - https://afst.centre-mersenne.org/articles/10.5802/afst.1793/
DO  - 10.5802/afst.1793
LA  - en
ID  - AFST_2024_6_33_4_997_0
ER  - 
%0 Journal Article
%A Rainie Bozzai
%A Benjamin Linowitz
%T Systoles of Arithmetic Hyperbolic 2- and 3-Manifolds
%J Annales de la Faculté des sciences de Toulouse : Mathématiques
%D 2024
%P 997-1017
%V 33
%N 4
%I Université Paul Sabatier, Toulouse
%U https://afst.centre-mersenne.org/articles/10.5802/afst.1793/
%R 10.5802/afst.1793
%G en
%F AFST_2024_6_33_4_997_0
Rainie Bozzai; Benjamin Linowitz. Systoles of Arithmetic Hyperbolic 2- and 3-Manifolds. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 33 (2024) no. 4, pp. 997-1017. doi : 10.5802/afst.1793. https://afst.centre-mersenne.org/articles/10.5802/afst.1793/

[1] Ted Chinburg; Eduardo Friedman An embedding theorem for quaternion algebras, J. Lond. Math. Soc., Volume 60 (1999) no. 1, pp. 33-44 | DOI | MR | Zbl

[2] Ted Chinburg; Eduardo Friedman; Kerry. N. Jones; Alan W. Reid The arithmetic hyperbolic 3-manifold of smallest volume, Ann. Sc. Norm. Super. Pisa, Cl. Sci., Volume 30 (2001) no. 1, pp. 1-40 | Numdam | MR | Zbl

[3] Ted Chinburg; Eduardo Friedman; Darren D. Long; Alan W. Reid Geodesics and commensurability classes of arithmetic hyperbolic 3–manifolds, Duke Math. J., Volume 145 (2008) no. 1, pp. 25-44 | Zbl

[4] Henri Cohen; Francisco Diaz y Diaz; Michel Olivier Constructing complete tables of quartic fields using Kummer theory, Math. Comput., Volume 72 (2003) no. 242, pp. 941-951 | DOI | MR | Zbl

[5] Johannes J. Duistermaat; Victor W. Guillemin The spectrum of positive elliptic operators and periodic bicharacteristics, Invent. Math., Volume 29 (1975), pp. 39-79 | DOI | MR | Zbl

[6] Johannes J. Duistermaat; Johan A. C. Kolk; Veeravalli S. Varadarajan Spectra of compact locally symmetric manifolds of negative curvature, Invent. Math., Volume 52 (1979) no. 1, pp. 27-93 | DOI | MR | Zbl

[7] Pál Erdős Beweis eines satzes von tschebyschef, Acta Szeged, Volume 5 (1932), pp. 194-198 | Zbl

[8] Mikołaj Frączyk; Sebastian Hurtado; Jean Raimbault Homotopy type and homology versus volume for arithmetic locally symmetric spaces (2022) | arXiv

[9] David Futer; Christian Millichap Spectrally similar incommensurable 3-manifolds, Proc. Lond. Math. Soc., Volume 115 (2017) no. 2, pp. 411-447 | DOI | MR | Zbl

[10] Zhenchao Ge; Micah B. Milinovich; Paul Pollack A note on the least prime that splits completely in a nonabelian Galois number field, Math. Z., Volume 292 (2019) no. 1-2, pp. 183-192 | MR | Zbl

[11] Tsachik Gelander Homotopy type and volume of locally symmetric manifolds, Duke Math. J., Volume 124 (2004) no. 3, pp. 459-515 | MR | Zbl

[12] Michael J. Jacobson; Richard F. Lukes; Hugh C. Williams An investigation of bounds for the regulator of quadratic fields, Exp. Math., Volume 4 (1995) no. 3, pp. 211-225 | DOI | MR | Zbl

[13] Jeffrey C. Lagarias; Hugh L. Montgomery; Andrew M. Odlyzko A bound for the least prime ideal in the Chebotarev density theorem, Invent. Math., Volume 54 (1979), pp. 271-296 | DOI | MR | Zbl

[14] Jeffrey C. Lagarias; Andrew M. Odlyzko Effective versions of the Chebotarev density theorem, Algebraic number fields: L-functions and Galois properties (Proc. Sympos., Univ. Durham, Durham, 1975), Academic Press Inc., 1975, pp. 409-464 | MR | Zbl

[15] Benjamin Linowitz; David B. McReynolds; Paul Pollack; Lola Thompson Systoles of arithmetic hyperbolic surfaces and 3-manifolds, Math. Res. Lett., Volume 24 (2017) no. 5, pp. 1497-1522 | DOI | MR | Zbl

[16] Benjamin Linowitz; David B. McReynolds; Paul Pollack; Lola Thompson Counting and effective rigidity in algebra and geometry, Invent. Math., Volume 213 (2018) no. 2, pp. 697-758 | DOI | MR | Zbl

[17] Colin Maclachlan; Alan W. Reid The Arithmetic of Hyperbolic 3–Manifolds, Graduate Texts in Mathematics, 219, Springer, 2003, xiii+463 pages | DOI | MR | Zbl

[18] Christian Millichap Mutations and short geodesics in hyperbolic 3-manifolds, Commun. Anal. Geom., Volume 25 (2017) no. 3, pp. 625-683 | DOI | MR | Zbl

[19] Lillian B. Pierce; Caroline L. Turnage-Butterbaugh; Melanie Matchett Wood An effective Chebotarev density theorem for families of number fields, with an application to -torsion in class groups, Invent. Math., Volume 219 (2020) no. 2, pp. 701-778 | DOI | MR | Zbl

[20] Paul Pollack The smallest prime that splits completely in an abelian number field, Proc. Am. Math. Soc., Volume 142 (2014) no. 6, pp. 1925-1934 | DOI | MR | Zbl

[21] Gopal Prasad Volumes of S-arithmetic quotients of semi-simple groups, Publ. Math., Inst. Hautes Étud. Sci., Volume 69 (1989), pp. 91-117 (with an appendix by Moshe Jarden and the author) | DOI | Numdam | MR | Zbl

[22] Gopal Prasad; Andrei S. Rapinchuk Weakly commensurable arithmetic groups and isospectral locally symmetric spaces, Publ. Math., Inst. Hautes Étud. Sci., Volume 109 (2009), pp. 113-184 | DOI | Numdam | MR | Zbl

[23] Alan W. Reid Isospectrality and commensurability of arithmetic hyperbolic 2- and 3-manifolds, Duke Math. J., Volume 65 (1992) no. 2, pp. 215-228 | MR | Zbl

[24] The Sage Developers SageMath, the Sage Mathematics Software System (Version 9.4), 2021 (http://www.sagemath.org/)

[25] Bernhard Schmal Diskriminanten, -Ganzheitsbasen und relative Ganzheitsbasen bei multiquadratischen Zahlkörpern, Arch. Math., Volume 52 (1989) no. 3, pp. 245-257 | DOI | Zbl

[26] Joseph H. Silverman Lower bounds for height functions, Duke Math. J., Volume 51 (1984), pp. 395-403 | MR | Zbl

[27] John Voight Quaternion Algebras, Graduate Texts in Mathematics, 288, Springer, 2021, xxiii+885 pages | DOI | MR | Zbl

[28] Song Wang An effective version of the Grunwald–Wang theorem, Ph. D. Thesis, Caltech (2001)

[29] Triantafyllos Xylouris On the least prime in an arithmetic progression and estimates for the zeros of Dirichlet L-functions, Acta Arith., Volume 150 (2011) no. 1, pp. 65-91 | DOI | MR | Zbl

Cité par Sources :