Global derivation of a Boussinesq–Navier–Stokes type system from fluid-kinetic equations
Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 33 (2024) no. 4, pp. 1059-1154.

We study a hydrodynamic limit of the Vlasov–Navier–Stokes system with external gravity force. We answer a question raised by Han-Kwan and Michel in [48] concerning the limit towards a Boussinesq–Navier–Stokes type system. Our work provides a rigorous derivation of such hydrodynamic equations for arbitrarily large times, starting from the previous fluid-kinetic coupling. To do so, we consider a particular spatial geometric setting corresponding to the half-space case. Our proof is based on an absorption effect at the boundary which leads to crucial decay in time estimates.

Nous étudions une limite hydrodynamique du système de Vlasov–Navier–Stokes avec une force de gravité extérieure. Nous répondons ici à une question soulevée par Han-Kwan et Michel concernant la limite vers un système de type Boussinesq–Navier–Stokes. Notre travail établit une dérivation rigoureuse de ces équations hydrodynamiques pour des temps arbitrairement grands, à partir du couplage fluide-cinétique précédent. Pour ce faire, nous considérons un cadre géométrique spatial particulier correspondant au cas du demi-espace. Notre preuve est basée sur un effet crucial d’absorption au bord qui conduit à des estimations de décroissance en temps.

Received:
Accepted:
Published online:
DOI: 10.5802/afst.1796

Lucas Ertzbischoff 1

1 Centre de Mathématiques Laurent Schwartz (UMR 7640), Ecole polytechnique, Institut Polytechnique de Paris, 91128 Palaiseau Cedex, France
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{AFST_2024_6_33_4_1059_0,
     author = {Lucas Ertzbischoff},
     title = {Global derivation of a {Boussinesq{\textendash}Navier{\textendash}Stokes} type system from fluid-kinetic equations},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     pages = {1059--1154},
     publisher = {Universit\'e Paul Sabatier, Toulouse},
     volume = {Ser. 6, 33},
     number = {4},
     year = {2024},
     doi = {10.5802/afst.1796},
     language = {en},
     url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1796/}
}
TY  - JOUR
AU  - Lucas Ertzbischoff
TI  - Global derivation of a Boussinesq–Navier–Stokes type system from fluid-kinetic equations
JO  - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY  - 2024
SP  - 1059
EP  - 1154
VL  - 33
IS  - 4
PB  - Université Paul Sabatier, Toulouse
UR  - https://afst.centre-mersenne.org/articles/10.5802/afst.1796/
DO  - 10.5802/afst.1796
LA  - en
ID  - AFST_2024_6_33_4_1059_0
ER  - 
%0 Journal Article
%A Lucas Ertzbischoff
%T Global derivation of a Boussinesq–Navier–Stokes type system from fluid-kinetic equations
%J Annales de la Faculté des sciences de Toulouse : Mathématiques
%D 2024
%P 1059-1154
%V 33
%N 4
%I Université Paul Sabatier, Toulouse
%U https://afst.centre-mersenne.org/articles/10.5802/afst.1796/
%R 10.5802/afst.1796
%G en
%F AFST_2024_6_33_4_1059_0
Lucas Ertzbischoff. Global derivation of a Boussinesq–Navier–Stokes type system from fluid-kinetic equations. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 33 (2024) no. 4, pp. 1059-1154. doi : 10.5802/afst.1796. https://afst.centre-mersenne.org/articles/10.5802/afst.1796/

[1] Hammadi Abidi; Taoufik Hmidi On the global well-posedness for Boussinesq system, J. Differ. Equations, Volume 233 (2007) no. 1, pp. 199-220 | DOI | MR

[2] Claude Bardos; Pierre Degond Global existence for the Vlasov–Poisson equation in 3 space variables with small initial data, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 2 (1985), pp. 101-118 | Numdam | MR | Zbl

[3] Claude Bardos; Gilles Lebeau; Jeffrey Rauch Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary, SIAM J. Control Optim., Volume 30 (1992) no. 5, pp. 1024-1065 | DOI | Zbl

[4] Saad Benjelloun; Laurent Desvillettes; Ayman Moussa Existence theory for the kinetic-fluid coupling when small droplets are treated as part of the fluid, J. Hyperbolic Differ. Equ., Volume 11 (2014) no. 01, pp. 109-133 | DOI | MR | Zbl

[5] Etienne Bernard; Laurent Desvillettes; François Golse; Valeria Ricci A derivation of the Vlasov–Navier–Stokes model for aerosol flows from kinetic theory, Commun. Math. Sci., Volume 15 (2017) no. 6, pp. 1703-1741 | DOI | MR | Zbl

[6] Etienne Bernard; Laurent Desvillettes; François Golse; Valeria Ricci A derivation of the Vlasov–Stokes system for aerosol flows from the kinetic theory of binary gas mixtures, Kinet. Relat. Models, Volume 11 (2018) no. 1, pp. 43-69 | MR | Zbl

[7] Alain Blaustein; Francis Filbet Concentration phenomena in FitzHugh–Nagumo’s equations: A mesoscopic approach (2022) | arXiv

[8] Wolfgang Borchers; Tetsuro Miyakawa L2 decay for the Navier–Stokes flow in halfspaces, Math. Ann., Volume 282 (1988) no. 1, pp. 139-155 | DOI | MR | Zbl

[9] Lorenzo Brandolese; Charafeddine Mouzouni A short proof of the large time energy growth for the Boussinesq system, J. Nonlinear Sci., Volume 27 (2017) no. 5, pp. 1589-1608 | DOI | MR | Zbl

[10] Lorenzo Brandolese; Maria E. Schonbek Large time decay and growth for solutions of a viscous Boussinesq system, Trans. Am. Math. Soc., Volume 364 (2012) no. 10, pp. 5057-5090 | DOI | MR | Zbl

[11] Yann Brenier A Vlasov–Poisson formulation of the Euler equations for perfect incompressible fluids, 1989 (Rapport de recherche INRIA)

[12] Yann Brenier Convergence of the Vlasov–Poisson system to the incompressible Euler equations, Commun. Partial Differ. Equations, Volume 25 (2000) no. 3-4, pp. 737-754 | DOI | MR | Zbl

[13] Kleber Carrapatoso; Matthieu Hillairet On the Derivation of a Stokes–Brinkman Problem from Stokes Equations Around a Random Array of Moving Spheres, Commun. Math. Phys., Volume 373 (2020) no. 1, pp. 265-325 | DOI | MR | Zbl

[14] José A. Carrillo; Young-Pil Choi Quantitative error estimates for the large friction limit of Vlasov equation with nonlocal forces, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 37 (2020) no. 4, pp. 925-954 | DOI | Numdam | MR | Zbl

[15] José A. Carrillo; Thierry Goudon Stability and asymptotic analysis of a fluid-particle interaction model, Commun. Partial Differ. Equations, Volume 31 (2006) no. 9, pp. 1349-1379 | DOI | MR | Zbl

[16] José A. Carrillo; Thierry Goudon; Pauline Lafitte Simulation of fluid and particles flows: Asymptotic preserving schemes for bubbling and flowing regimes, J. Comput. Phys., Volume 227 (2008) no. 16, pp. 7929-7951 | DOI | MR | Zbl

[17] Dongho Chae Global regularity for the 2D Boussinesq equations with partial viscosity terms, Adv. Math., Volume 203 (2006) no. 2, pp. 497-513 | DOI | MR | Zbl

[18] Dongho Chae; Qianyun Miao; Liutang Xue Global regularity of non-diffusive temperature fronts for the 2D viscous Boussinesq system (2021) | arXiv

[19] Joachim Crevat Asymptotic limit of a spatially-extended mean-field FitzHugh–Nagumo model, Math. Models Methods Appl. Sci., Volume 30 (2020) no. 5, pp. 957-990 | DOI | MR | Zbl

[20] Joachim Crevat; Grégory Faye; Francis Filbet Rigorous derivation of the nonlocal reaction-diffusion FitzHugh–Nagumo system, SIAM J. Math. Anal., Volume 51 (2019) no. 1, pp. 346-373 | DOI | MR | Zbl

[21] Haibo Cui; Wenjun Wang; Lei Yao Asymptotic analysis for 1D compressible Navier–Stokes–Vlasov equations, Commun. Pure Appl. Anal., Volume 19 (2020) no. 5, p. 2737 | Zbl

[22] Raphaël Danchin; Marius Paicu Les théorèmes de Leray et de Fujita–Kato pour le système de Boussinesq partiellement visqueux, Bull. Soc. Math. Fr., Volume 136 (2008) no. 2, pp. 261-309 | DOI | Numdam | MR | Zbl

[23] Raphaël Danchin; Xin Zhang Global persistence of geometrical structures for the Boussinesq equation with no diffusion, Commun. Partial Differ. Equations, Volume 42 (2017) no. 1, pp. 68-99 | DOI | MR | Zbl

[24] Laurent Desvillettes Some aspects of the modeling at different scales of multiphase flows, Comput. Methods Appl. Mech. Eng., Volume 199 (2010) no. 21-22, pp. 1265-1267 | DOI | MR | Zbl

[25] Laurent Desvillettes; François Golse; Valeria Ricci The mean-field limit for solid particles in a Navier–Stokes flow, J. Stat. Phys., Volume 131 (2008) no. 5, pp. 941-967 | DOI | MR | Zbl

[26] Ronald J. DiPerna; Pierre-Louis Lions Ordinary differential equations, transport theory and Sobolev spaces, Invent. Math., Volume 98 (1989) no. 3, pp. 511-547 | DOI | MR | Zbl

[27] Charles R. Doering; Jiahong Wu; Kun Zhao; Xiaoming Zheng Long time behavior of the two-dimensional Boussinesq equations without buoyancy diffusion, Phys. D: Nonlinear Phenom., Volume 376 (2018), pp. 144-159 | DOI | MR | Zbl

[28] Lihua Dong; Yongzhong Sun On asymptotic stability of the 3D Boussinesq equations without thermal conduction (2021) | arXiv

[29] Lucas Ertzbischoff Decay and absorption for the Vlasov–Navier–Stokes system with gravity in a half-space (2021) | arXiv

[30] Lucas Ertzbischoff In preparation, 2023 (PhD thesis in preparation at Institut Polytechnique de Paris)

[31] Lucas Ertzbischoff; Daniel Han-Kwan; Ayman Moussa Concentration versus absorption for the Vlasov–Navier–Stokes system on bounded domains, Nonlinearity, Volume 34 (2021) no. 10, p. 6843 | DOI | MR | Zbl

[32] Alessio Figalli; Moon-Jin Kang A rigorous derivation from the kinetic Cucker–Smale model to the pressureless Euler system with nonlocal alignment, Anal. PDE, Volume 12 (2019) no. 3, pp. 843-866 | DOI | MR | Zbl

[33] Franco Flandoli; Marta Leocata; Cristiano Ricci The Vlasov–Navier–Stokes equations as a mean field limit, Discrete Contin. Dyn. Syst., Ser. B, Volume 24 (2019) no. 8, pp. 3741-3753 | MR | Zbl

[34] Franco Flandoli; Marta Leocata; Cristiano Ricci The Navier–Stokes–Vlasov–Fokker–Planck system as a scaling limit of particles in a fluid, J. Math. Fluid Mech., Volume 23 (2021) no. 2, 40, 39 pages | Zbl

[35] Francisco Gancedo; Eduardo García-Juárez Regularity results for viscous 3D Boussinesq temperature fronts, Commun. Math. Phys., Volume 376 (2020), pp. 1705-1736 | DOI | MR | Zbl

[36] Yoshikazu Giga; Hermann Sohr Abstract Lp estimates for the Cauchy problem with applications to the Navier–Stokes equations in exterior domains, J. Funct. Anal., Volume 102 (1991) no. 1, pp. 72-94 | DOI | MR | Zbl

[37] Olivier Glass; Daniel Han-Kwan; Ayman Moussa The Vlasov–Navier–Stokes System in a 2D Pipe: Existence and Stability of Regular Equilibria, Arch. Ration. Mech. Anal., Volume 230 (2018) no. 2, pp. 593-639 | DOI | MR | Zbl

[38] Thierry Goudon Asymptotic problems for a kinetic model of two-phase flow, Proc. R. Soc. Edinb., Sect. A, Math., Volume 131 (2001) no. 6, pp. 1371-1384 | DOI | MR | Zbl

[39] Thierry Goudon; Pierre-Emmanuel Jabin; Alexis Vasseur Hydrodynamic limit for the Vlasov–Navier–Stokes equations. Part I: Light particles regime, Indiana Univ. Math. J., Volume 53 (2004) no. 6, pp. 1495-1515 | DOI | MR | Zbl

[40] Thierry Goudon; Pierre-Emmanuel Jabin; Alexis Vasseur Hydrodynamic limit for the Vlasov–Navier–Stokes equations. Part II: Fine particles regime, Indiana Univ. Math. J., Volume 53 (2004) no. 6, pp. 1517-1536 | DOI | MR

[41] Thierry Goudon; Frédéric Poupaud On the modeling of the transport of particles in turbulent flows, ESAIM, Math. Model. Numer. Anal., Volume 38 (2004) no. 4, pp. 673-690 | DOI | Numdam | MR | Zbl

[42] Hezekiah Grayer Dynamics of density patches in infinite Prandtl number convection (2022) | arXiv

[43] Pigong Han; Maria E. Schonbek Large time decay properties of solutions to a viscous Boussinesq system in a half space, Adv. Differ. Equ., Volume 19 (2014) no. 1-2, pp. 87-132 | MR | Zbl

[44] Daniel Han-Kwan Quasineutral limit of the Vlasov–Poisson system with massless electrons, Commun. Partial Differ. Equations, Volume 36 (2011) no. 7-9, pp. 1385-1425 | DOI | MR | Zbl

[45] Daniel Han-Kwan Stabilité, limites singulières et conditions de contrôle géométrique en théorie cinétique, 2017 (Habilitation à diriger les recherches)

[46] Daniel Han-Kwan Large time behavior of small data solutions to the Vlasov–Navier–Stokes system on the whole space, Probab. Math. Phys., Volume 3 (2022) no. 1, pp. 35-67 | DOI | MR | Zbl

[47] Daniel Han-Kwan; Mikaela Iacobelli The quasineutral limit of the Vlasov–Poisson equation in Wasserstein metric, Commun. Math. Sci., Volume 15 (2017) no. 2, pp. 481-509 | DOI | MR | Zbl

[48] Daniel Han-Kwan; David Michel On hydrodynamic limits of the Vlasov–Navier–Stokes system, Memoirs of the American Mathematical Society, 1516, American Mathematical Society, 2024

[49] Daniel Han-Kwan; Ayman Moussa; Iván Moyano Large time behavior of the Vlasov–Navier–Stokes system on the torus, Arch. Ration. Mech. Anal., Volume 236 (2020) no. 3, pp. 1273-1323 | DOI | MR | Zbl

[50] Godfrey H. Hardy; John E. Littlewood; George Pólya Inequalities, Cambridge Mathematical Library, Cambridge University Press, 1988 (reprint of the 1952 edition)

[51] Matthieu Hillairet On the homogenization of the Stokes problem in a perforated domain, Arch. Ration. Mech. Anal., Volume 230 (2018) no. 3, pp. 1179-1228 | DOI | MR

[52] Matthieu Hillairet Derivation of the Stokes–Brinkman problem and extension to the Darcy regime, J. Elliptic Parabol. Equ., Volume 7 (2021) no. 2, pp. 341-360 | DOI | MR | Zbl

[53] Matthieu Hillairet; Ayman Moussa; Franck Sueur On the effect of polydispersity and rotation on the Brinkman force induced by a cloud of particles on a viscous incompressible flow, Kinet. Relat. Models, Volume 12 (2019) no. 4, pp. 681-701 | DOI | MR

[54] Taoufik Hmidi; Sahbi Keraani On the global well-posedness of the two-dimensional Boussinesq system with a zero diffusivity, Adv. Differ. Equ., Volume 12 (2007) no. 4, pp. 461-480 | MR | Zbl

[55] Taoufik Hmidi; Frédéric Rousset Global well-posedness for the Navier–Stokes–Boussinesq system with axisymmetric data, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 27 (2010) no. 5, pp. 1227-1246 | DOI | Numdam | MR | Zbl

[56] Richard M. Höfer The Inertialess Limit of Particle Sedimentation Modeled by the Vlasov–Stokes Equations, SIAM J. Math. Anal., Volume 50 (2018) no. 5, pp. 5446-5476 | DOI | MR | Zbl

[57] Richard M. Höfer Sedimentation of inertialess particles in Stokes flows, Commun. Math. Phys., Volume 360 (2018) no. 1, pp. 55-101 | DOI | MR | Zbl

[58] Richard M. Höfer Sedimentation of particle suspensions in Stokes flows, Ph. D. Thesis, Universitäts-und Landesbibliothek Bonn (2020)

[59] Richard M. Höfer; Richard Schubert The influence of Einstein’s effective viscosity on sedimentation at very small particle volume fraction, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 38 (2021) no. 6, pp. 1897-1927 | DOI | Numdam | MR | Zbl

[60] Thomas Y. Hou; Congming Li Global well-posedness of the viscous Boussinesq equations, Discrete Contin. Dyn. Syst., Volume 12 (2005) no. 1, pp. 1-12 | MR | Zbl

[61] Pierre-Emmanuel Jabin Macroscopic limit of Vlasov type equations with friction, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 17 (2000) no. 5, pp. 651-672 | DOI | Numdam | MR | Zbl

[62] Pierre-Emmanuel Jabin Various levels of models for aerosols., Math. Models Methods Appl. Sci., Volume 12 (2002) no. 7, pp. 903-919 | DOI | MR | Zbl

[63] Igor Kukavica; Weinan Wang Long time behavior of solutions to the 2D Boussinesq equations with zero diffusivity, J. Dyn. Differ. Equations, Volume 32 (2020) no. 4, pp. 2061-2077 | DOI | MR | Zbl

[64] Antoine Leblond Well-posedness of the Stokes-transport system in bounded domains and in the infinite strip, J. Math. Pures Appl., Volume 158 (2022), pp. 120-143 | DOI | MR | Zbl

[65] Alessandra Lunardi Interpolation theory, Appunti. Scuola Normale Superiore di Pisa (Nuova Serie), 16, Edizioni della Normale, 2018, xiv+199 pages | DOI | MR

[66] Andrew Majda Introduction to PDEs and waves for the atmosphere and ocean, Courant Lecture Notes in Mathematics, 9, American Mathematical Society; Courant Institute, 2003 | MR

[67] Andrew J. Majda; Andrea L. Bertozzi Vorticity and incompressible flow, Cambridge Texts in Applied Mathematics, Cambridge University Press, 2002 | MR

[68] Nader Masmoudi From Vlasov–Poisson system to the incompressible Euler system., Commun. Partial Differ. Equations, Volume 26 (2001) no. 9-10, pp. 1913-1928 | DOI | MR | Zbl

[69] Nader Masmoudi; Belkacem Said-Houari; Weiren Zhao Stability of Couette flow for 2D Boussinesq system without thermal diffusivity (2020) | arXiv

[70] Amina Mecherbet Sedimentation of particles in Stokes flow, Kinet. Relat. Models, Volume 12 (2019) no. 5, pp. 955-1044 | MR | Zbl

[71] Amina Mecherbet On the sedimentation of a droplet in Stokes flow (2020) (to appear in Comm. Math. Sci.) | arXiv

[72] Amina Mecherbet; Franck Sueur A few remarks on the transport-Stokes system (2022) | arXiv

[73] Antoine Mellet; Alexis Vasseur Asymptotic analysis for a Vlasov–Fokker–Planck/compressible Navier–Stokes system of equations, Commun. Math. Phys., Volume 281 (2008) no. 3, pp. 573-596 | DOI | Zbl

[74] Stéphane Mischler On the trace problem for solutions of the Vlasov equation, Commun. Partial Differ. Equations, Volume 25 (2000) no. 7-8, pp. 1415-1443 | DOI | MR | Zbl

[75] Ayman Moussa; Franck Sueur On a Vlasov–Euler system for 2D sprays with gyroscopic effects, Asymptotic Anal., Volume 81 (2013) no. 1, pp. 53-91 | DOI | MR | Zbl

[76] Peter John O’Rourke Collective drop effects on vaporizing liquid sprays (1981) (Technical report)

[77] Rick Salmon Lectures on geophysical fluid dynamics, Oxford University Press, 1998 | MR

[78] Yunfei Su; Lei Yao Hydrodynamic limit for the inhomogeneous incompressible Navier–Stokes/Vlasov–Fokker–Planck equations, J. Differ. Equations, Volume 269 (2020) no. 2, pp. 1079-1116 | Zbl

[79] Lizheng Tao; Jiahong Wu; Kun Zhao; Xiaoming Zheng Stability near hydrostatic equilibrium to the 2D Boussinesq equations without thermal diffusion, Arch. Ration. Mech. Anal., Volume 237 (2020) no. 2, pp. 585-630 | MR | Zbl

[80] Geoffrey K Vallis Atmospheric and oceanic fluid dynamics, Cambridge University Press, 2017 | DOI

[81] Michael Wiegner Decay results for weak solutions of the Navier–Stokes equations on Rn, J. Lond. Math. Soc., Volume 2 (1987) no. 2, pp. 303-313 | DOI | MR | Zbl

[82] Forman A Williams Combustion theory, Benjamin Cummings, 1985

Cited by Sources: