We study a hydrodynamic limit of the Vlasov–Navier–Stokes system with external gravity force. We answer a question raised by Han-Kwan and Michel in [48] concerning the limit towards a Boussinesq–Navier–Stokes type system. Our work provides a rigorous derivation of such hydrodynamic equations for arbitrarily large times, starting from the previous fluid-kinetic coupling. To do so, we consider a particular spatial geometric setting corresponding to the half-space case. Our proof is based on an absorption effect at the boundary which leads to crucial decay in time estimates.
Nous étudions une limite hydrodynamique du système de Vlasov–Navier–Stokes avec une force de gravité extérieure. Nous répondons ici à une question soulevée par Han-Kwan et Michel concernant la limite vers un système de type Boussinesq–Navier–Stokes. Notre travail établit une dérivation rigoureuse de ces équations hydrodynamiques pour des temps arbitrairement grands, à partir du couplage fluide-cinétique précédent. Pour ce faire, nous considérons un cadre géométrique spatial particulier correspondant au cas du demi-espace. Notre preuve est basée sur un effet crucial d’absorption au bord qui conduit à des estimations de décroissance en temps.
Accepted:
Published online:
Lucas Ertzbischoff 1

@article{AFST_2024_6_33_4_1059_0, author = {Lucas Ertzbischoff}, title = {Global derivation of a {Boussinesq{\textendash}Navier{\textendash}Stokes} type system from fluid-kinetic equations}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {1059--1154}, publisher = {Universit\'e Paul Sabatier, Toulouse}, volume = {Ser. 6, 33}, number = {4}, year = {2024}, doi = {10.5802/afst.1796}, language = {en}, url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1796/} }
TY - JOUR AU - Lucas Ertzbischoff TI - Global derivation of a Boussinesq–Navier–Stokes type system from fluid-kinetic equations JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2024 SP - 1059 EP - 1154 VL - 33 IS - 4 PB - Université Paul Sabatier, Toulouse UR - https://afst.centre-mersenne.org/articles/10.5802/afst.1796/ DO - 10.5802/afst.1796 LA - en ID - AFST_2024_6_33_4_1059_0 ER -
%0 Journal Article %A Lucas Ertzbischoff %T Global derivation of a Boussinesq–Navier–Stokes type system from fluid-kinetic equations %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2024 %P 1059-1154 %V 33 %N 4 %I Université Paul Sabatier, Toulouse %U https://afst.centre-mersenne.org/articles/10.5802/afst.1796/ %R 10.5802/afst.1796 %G en %F AFST_2024_6_33_4_1059_0
Lucas Ertzbischoff. Global derivation of a Boussinesq–Navier–Stokes type system from fluid-kinetic equations. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 33 (2024) no. 4, pp. 1059-1154. doi : 10.5802/afst.1796. https://afst.centre-mersenne.org/articles/10.5802/afst.1796/
[1] On the global well-posedness for Boussinesq system, J. Differ. Equations, Volume 233 (2007) no. 1, pp. 199-220 | DOI | MR
[2] Global existence for the Vlasov–Poisson equation in 3 space variables with small initial data, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 2 (1985), pp. 101-118 | Numdam | MR | Zbl
[3] Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary, SIAM J. Control Optim., Volume 30 (1992) no. 5, pp. 1024-1065 | DOI | Zbl
[4] Existence theory for the kinetic-fluid coupling when small droplets are treated as part of the fluid, J. Hyperbolic Differ. Equ., Volume 11 (2014) no. 01, pp. 109-133 | DOI | MR | Zbl
[5] A derivation of the Vlasov–Navier–Stokes model for aerosol flows from kinetic theory, Commun. Math. Sci., Volume 15 (2017) no. 6, pp. 1703-1741 | DOI | MR | Zbl
[6] A derivation of the Vlasov–Stokes system for aerosol flows from the kinetic theory of binary gas mixtures, Kinet. Relat. Models, Volume 11 (2018) no. 1, pp. 43-69 | MR | Zbl
[7] Concentration phenomena in FitzHugh–Nagumo’s equations: A mesoscopic approach (2022) | arXiv
[8] L2 decay for the Navier–Stokes flow in halfspaces, Math. Ann., Volume 282 (1988) no. 1, pp. 139-155 | DOI | MR | Zbl
[9] A short proof of the large time energy growth for the Boussinesq system, J. Nonlinear Sci., Volume 27 (2017) no. 5, pp. 1589-1608 | DOI | MR | Zbl
[10] Large time decay and growth for solutions of a viscous Boussinesq system, Trans. Am. Math. Soc., Volume 364 (2012) no. 10, pp. 5057-5090 | DOI | MR | Zbl
[11] A Vlasov–Poisson formulation of the Euler equations for perfect incompressible fluids, 1989 (Rapport de recherche INRIA)
[12] Convergence of the Vlasov–Poisson system to the incompressible Euler equations, Commun. Partial Differ. Equations, Volume 25 (2000) no. 3-4, pp. 737-754 | DOI | MR | Zbl
[13] On the Derivation of a Stokes–Brinkman Problem from Stokes Equations Around a Random Array of Moving Spheres, Commun. Math. Phys., Volume 373 (2020) no. 1, pp. 265-325 | DOI | MR | Zbl
[14] Quantitative error estimates for the large friction limit of Vlasov equation with nonlocal forces, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 37 (2020) no. 4, pp. 925-954 | DOI | Numdam | MR | Zbl
[15] Stability and asymptotic analysis of a fluid-particle interaction model, Commun. Partial Differ. Equations, Volume 31 (2006) no. 9, pp. 1349-1379 | DOI | MR | Zbl
[16] Simulation of fluid and particles flows: Asymptotic preserving schemes for bubbling and flowing regimes, J. Comput. Phys., Volume 227 (2008) no. 16, pp. 7929-7951 | DOI | MR | Zbl
[17] Global regularity for the 2D Boussinesq equations with partial viscosity terms, Adv. Math., Volume 203 (2006) no. 2, pp. 497-513 | DOI | MR | Zbl
[18] Global regularity of non-diffusive temperature fronts for the 2D viscous Boussinesq system (2021) | arXiv
[19] Asymptotic limit of a spatially-extended mean-field FitzHugh–Nagumo model, Math. Models Methods Appl. Sci., Volume 30 (2020) no. 5, pp. 957-990 | DOI | MR | Zbl
[20] Rigorous derivation of the nonlocal reaction-diffusion FitzHugh–Nagumo system, SIAM J. Math. Anal., Volume 51 (2019) no. 1, pp. 346-373 | DOI | MR | Zbl
[21] Asymptotic analysis for 1D compressible Navier–Stokes–Vlasov equations, Commun. Pure Appl. Anal., Volume 19 (2020) no. 5, p. 2737 | Zbl
[22] Les théorèmes de Leray et de Fujita–Kato pour le système de Boussinesq partiellement visqueux, Bull. Soc. Math. Fr., Volume 136 (2008) no. 2, pp. 261-309 | DOI | Numdam | MR | Zbl
[23] Global persistence of geometrical structures for the Boussinesq equation with no diffusion, Commun. Partial Differ. Equations, Volume 42 (2017) no. 1, pp. 68-99 | DOI | MR | Zbl
[24] Some aspects of the modeling at different scales of multiphase flows, Comput. Methods Appl. Mech. Eng., Volume 199 (2010) no. 21-22, pp. 1265-1267 | DOI | MR | Zbl
[25] The mean-field limit for solid particles in a Navier–Stokes flow, J. Stat. Phys., Volume 131 (2008) no. 5, pp. 941-967 | DOI | MR | Zbl
[26] Ordinary differential equations, transport theory and Sobolev spaces, Invent. Math., Volume 98 (1989) no. 3, pp. 511-547 | DOI | MR | Zbl
[27] Long time behavior of the two-dimensional Boussinesq equations without buoyancy diffusion, Phys. D: Nonlinear Phenom., Volume 376 (2018), pp. 144-159 | DOI | MR | Zbl
[28] On asymptotic stability of the 3D Boussinesq equations without thermal conduction (2021) | arXiv
[29] Decay and absorption for the Vlasov–Navier–Stokes system with gravity in a half-space (2021) | arXiv
[30] In preparation, 2023 (PhD thesis in preparation at Institut Polytechnique de Paris)
[31] Concentration versus absorption for the Vlasov–Navier–Stokes system on bounded domains, Nonlinearity, Volume 34 (2021) no. 10, p. 6843 | DOI | MR | Zbl
[32] A rigorous derivation from the kinetic Cucker–Smale model to the pressureless Euler system with nonlocal alignment, Anal. PDE, Volume 12 (2019) no. 3, pp. 843-866 | DOI | MR | Zbl
[33] The Vlasov–Navier–Stokes equations as a mean field limit, Discrete Contin. Dyn. Syst., Ser. B, Volume 24 (2019) no. 8, pp. 3741-3753 | MR | Zbl
[34] The Navier–Stokes–Vlasov–Fokker–Planck system as a scaling limit of particles in a fluid, J. Math. Fluid Mech., Volume 23 (2021) no. 2, 40, 39 pages | Zbl
[35] Regularity results for viscous 3D Boussinesq temperature fronts, Commun. Math. Phys., Volume 376 (2020), pp. 1705-1736 | DOI | MR | Zbl
[36] Abstract Lp estimates for the Cauchy problem with applications to the Navier–Stokes equations in exterior domains, J. Funct. Anal., Volume 102 (1991) no. 1, pp. 72-94 | DOI | MR | Zbl
[37] The Vlasov–Navier–Stokes System in a 2D Pipe: Existence and Stability of Regular Equilibria, Arch. Ration. Mech. Anal., Volume 230 (2018) no. 2, pp. 593-639 | DOI | MR | Zbl
[38] Asymptotic problems for a kinetic model of two-phase flow, Proc. R. Soc. Edinb., Sect. A, Math., Volume 131 (2001) no. 6, pp. 1371-1384 | DOI | MR | Zbl
[39] Hydrodynamic limit for the Vlasov–Navier–Stokes equations. Part I: Light particles regime, Indiana Univ. Math. J., Volume 53 (2004) no. 6, pp. 1495-1515 | DOI | MR | Zbl
[40] Hydrodynamic limit for the Vlasov–Navier–Stokes equations. Part II: Fine particles regime, Indiana Univ. Math. J., Volume 53 (2004) no. 6, pp. 1517-1536 | DOI | MR
[41] On the modeling of the transport of particles in turbulent flows, ESAIM, Math. Model. Numer. Anal., Volume 38 (2004) no. 4, pp. 673-690 | DOI | Numdam | MR | Zbl
[42] Dynamics of density patches in infinite Prandtl number convection (2022) | arXiv
[43] Large time decay properties of solutions to a viscous Boussinesq system in a half space, Adv. Differ. Equ., Volume 19 (2014) no. 1-2, pp. 87-132 | MR | Zbl
[44] Quasineutral limit of the Vlasov–Poisson system with massless electrons, Commun. Partial Differ. Equations, Volume 36 (2011) no. 7-9, pp. 1385-1425 | DOI | MR | Zbl
[45] Stabilité, limites singulières et conditions de contrôle géométrique en théorie cinétique, 2017 (Habilitation à diriger les recherches)
[46] Large time behavior of small data solutions to the Vlasov–Navier–Stokes system on the whole space, Probab. Math. Phys., Volume 3 (2022) no. 1, pp. 35-67 | DOI | MR | Zbl
[47] The quasineutral limit of the Vlasov–Poisson equation in Wasserstein metric, Commun. Math. Sci., Volume 15 (2017) no. 2, pp. 481-509 | DOI | MR | Zbl
[48] On hydrodynamic limits of the Vlasov–Navier–Stokes system, Memoirs of the American Mathematical Society, 1516, American Mathematical Society, 2024
[49] Large time behavior of the Vlasov–Navier–Stokes system on the torus, Arch. Ration. Mech. Anal., Volume 236 (2020) no. 3, pp. 1273-1323 | DOI | MR | Zbl
[50] Inequalities, Cambridge Mathematical Library, Cambridge University Press, 1988 (reprint of the 1952 edition)
[51] On the homogenization of the Stokes problem in a perforated domain, Arch. Ration. Mech. Anal., Volume 230 (2018) no. 3, pp. 1179-1228 | DOI | MR
[52] Derivation of the Stokes–Brinkman problem and extension to the Darcy regime, J. Elliptic Parabol. Equ., Volume 7 (2021) no. 2, pp. 341-360 | DOI | MR | Zbl
[53] On the effect of polydispersity and rotation on the Brinkman force induced by a cloud of particles on a viscous incompressible flow, Kinet. Relat. Models, Volume 12 (2019) no. 4, pp. 681-701 | DOI | MR
[54] On the global well-posedness of the two-dimensional Boussinesq system with a zero diffusivity, Adv. Differ. Equ., Volume 12 (2007) no. 4, pp. 461-480 | MR | Zbl
[55] Global well-posedness for the Navier–Stokes–Boussinesq system with axisymmetric data, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 27 (2010) no. 5, pp. 1227-1246 | DOI | Numdam | MR | Zbl
[56] The Inertialess Limit of Particle Sedimentation Modeled by the Vlasov–Stokes Equations, SIAM J. Math. Anal., Volume 50 (2018) no. 5, pp. 5446-5476 | DOI | MR | Zbl
[57] Sedimentation of inertialess particles in Stokes flows, Commun. Math. Phys., Volume 360 (2018) no. 1, pp. 55-101 | DOI | MR | Zbl
[58] Sedimentation of particle suspensions in Stokes flows, Ph. D. Thesis, Universitäts-und Landesbibliothek Bonn (2020)
[59] The influence of Einstein’s effective viscosity on sedimentation at very small particle volume fraction, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 38 (2021) no. 6, pp. 1897-1927 | DOI | Numdam | MR | Zbl
[60] Global well-posedness of the viscous Boussinesq equations, Discrete Contin. Dyn. Syst., Volume 12 (2005) no. 1, pp. 1-12 | MR | Zbl
[61] Macroscopic limit of Vlasov type equations with friction, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 17 (2000) no. 5, pp. 651-672 | DOI | Numdam | MR | Zbl
[62] Various levels of models for aerosols., Math. Models Methods Appl. Sci., Volume 12 (2002) no. 7, pp. 903-919 | DOI | MR | Zbl
[63] Long time behavior of solutions to the 2D Boussinesq equations with zero diffusivity, J. Dyn. Differ. Equations, Volume 32 (2020) no. 4, pp. 2061-2077 | DOI | MR | Zbl
[64] Well-posedness of the Stokes-transport system in bounded domains and in the infinite strip, J. Math. Pures Appl., Volume 158 (2022), pp. 120-143 | DOI | MR | Zbl
[65] Interpolation theory, Appunti. Scuola Normale Superiore di Pisa (Nuova Serie), 16, Edizioni della Normale, 2018, xiv+199 pages | DOI | MR
[66] Introduction to PDEs and waves for the atmosphere and ocean, Courant Lecture Notes in Mathematics, 9, American Mathematical Society; Courant Institute, 2003 | MR
[67] Vorticity and incompressible flow, Cambridge Texts in Applied Mathematics, Cambridge University Press, 2002 | MR
[68] From Vlasov–Poisson system to the incompressible Euler system., Commun. Partial Differ. Equations, Volume 26 (2001) no. 9-10, pp. 1913-1928 | DOI | MR | Zbl
[69] Stability of Couette flow for 2D Boussinesq system without thermal diffusivity (2020) | arXiv
[70] Sedimentation of particles in Stokes flow, Kinet. Relat. Models, Volume 12 (2019) no. 5, pp. 955-1044 | MR | Zbl
[71] On the sedimentation of a droplet in Stokes flow (2020) (to appear in Comm. Math. Sci.) | arXiv
[72] A few remarks on the transport-Stokes system (2022) | arXiv
[73] Asymptotic analysis for a Vlasov–Fokker–Planck/compressible Navier–Stokes system of equations, Commun. Math. Phys., Volume 281 (2008) no. 3, pp. 573-596 | DOI | Zbl
[74] On the trace problem for solutions of the Vlasov equation, Commun. Partial Differ. Equations, Volume 25 (2000) no. 7-8, pp. 1415-1443 | DOI | MR | Zbl
[75] On a Vlasov–Euler system for 2D sprays with gyroscopic effects, Asymptotic Anal., Volume 81 (2013) no. 1, pp. 53-91 | DOI | MR | Zbl
[76] Collective drop effects on vaporizing liquid sprays (1981) (Technical report)
[77] Lectures on geophysical fluid dynamics, Oxford University Press, 1998 | MR
[78] Hydrodynamic limit for the inhomogeneous incompressible Navier–Stokes/Vlasov–Fokker–Planck equations, J. Differ. Equations, Volume 269 (2020) no. 2, pp. 1079-1116 | Zbl
[79] Stability near hydrostatic equilibrium to the 2D Boussinesq equations without thermal diffusion, Arch. Ration. Mech. Anal., Volume 237 (2020) no. 2, pp. 585-630 | MR | Zbl
[80] Atmospheric and oceanic fluid dynamics, Cambridge University Press, 2017 | DOI
[81] Decay results for weak solutions of the Navier–Stokes equations on Rn, J. Lond. Math. Soc., Volume 2 (1987) no. 2, pp. 303-313 | DOI | MR | Zbl
[82] Combustion theory, Benjamin Cummings, 1985
Cited by Sources: