We consider mean-field limits for overdamped Langevin dynamics of $N$ particles with possibly singular interactions. It has been shown that a modulated free energy method can be used to prove the mean-field convergence or propagation of chaos for a certain class of interactions, including Riesz kernels. We show here that generation of chaos, i.e. exponential in time convergence to a tensorized (or iid) state starting from a nontensorized one, can be deduced from the modulated free energy method provided a uniform-in-$N$ “modulated logarithmic Sobolev inequality” holds. Proving such an inequality is a question of independent interest, which is generally difficult. As an illustration, we show that uniform modulated logarithmic Sobolev inequalities can be proven for a class of situations in one dimension.
On considère la limite de champ moyen pour la dynamique de Langevin suramortie de $N$ particules en interaction (possiblement) singulière. Il a été montré qu’on peut utiliser une méthode d’énergie libre modulée pour traiter une certaine classe d’interactions qui inclut les potentiels de Riesz. Nous montrons ici que l’on peut déduire de la méthode d’énergie libre modulée la génération du chaos, c.à.d. la convergence exponentielle en temps vers un état tensorisé partant d’une situation initiale non tensorisée, à condition qu’une « inégalité de Sobolev logarithmique modulée » uniforme en $N$ soit vraie. Prouver une telle inégalité est une question indépendante qui est en général difficile. Comme illustration, nous montrons que des inégalités de Sobolev logarithmiques modulées peuvent être prouvées pour une classe de problèmes unidimensionnels.
Accepté le :
Publié le :
Matthew Rosenzweig 1 ; Sylvia Serfaty 2

@article{AFST_2025_6_34_1_107_0, author = {Matthew Rosenzweig and Sylvia Serfaty}, title = {Modulated logarithmic {Sobolev} inequalities and generation of chaos}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {107--134}, publisher = {Universit\'e Paul Sabatier, Toulouse}, volume = {Ser. 6, 34}, number = {1}, year = {2025}, doi = {10.5802/afst.1807}, language = {en}, url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1807/} }
TY - JOUR AU - Matthew Rosenzweig AU - Sylvia Serfaty TI - Modulated logarithmic Sobolev inequalities and generation of chaos JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2025 SP - 107 EP - 134 VL - 34 IS - 1 PB - Université Paul Sabatier, Toulouse UR - https://afst.centre-mersenne.org/articles/10.5802/afst.1807/ DO - 10.5802/afst.1807 LA - en ID - AFST_2025_6_34_1_107_0 ER -
%0 Journal Article %A Matthew Rosenzweig %A Sylvia Serfaty %T Modulated logarithmic Sobolev inequalities and generation of chaos %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2025 %P 107-134 %V 34 %N 1 %I Université Paul Sabatier, Toulouse %U https://afst.centre-mersenne.org/articles/10.5802/afst.1807/ %R 10.5802/afst.1807 %G en %F AFST_2025_6_34_1_107_0
Matthew Rosenzweig; Sylvia Serfaty. Modulated logarithmic Sobolev inequalities and generation of chaos. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 34 (2025) no. 1, pp. 107-134. doi : 10.5802/afst.1807. https://afst.centre-mersenne.org/articles/10.5802/afst.1807/
[1] Sur les inégalités de Sobolev logarithmiques, Panoramas et Synthèses, 10, Société Mathématique de France, 2000, xiii+217 pages | MR | Zbl
[2] Local laws and rigidity for Coulomb gases at any temperature, Ann. Probab., Volume 49 (2021) no. 1, pp. 46-121 | MR | Zbl
[3] Thermal approximation of the equilibrium measure and obstacle problem, Ann. Fac. Sci. Toulouse, Math., Volume 31 (2022) no. 4, pp. 1085-1110 | DOI | Numdam | MR | Zbl
[4] Diffusions hypercontractives, Séminaire de probabilités, XIX, 1983/84 (Lecture Notes in Mathematics), Volume 1123, Springer, 1985, pp. 177-206 | DOI | Numdam | MR | Zbl
[5] Analysis and geometry of Markov diffusion operators, Grundlehren der Mathematischen Wissenschaften, 348, Springer, 2014, xx+552 pages | DOI | MR | Zbl
[6] A very simple proof of the LSI for high temperature spin systems, J. Funct. Anal., Volume 276 (2019) no. 8, pp. 2582-2588 | DOI | MR | Zbl
[7] Log-Sobolev inequality for the continuum sine-Gordon model, Pure Appl. Math., Volume 74 (2064) no. 10, pp. 2064-2113 | DOI | MR | Zbl
[8] Polar factorization and monotone rearrangement of vector-valued functions, Commun. Pure Appl. Math., Volume 44 (1991) no. 4, pp. 375-417 | DOI | MR | Zbl
[9] Convergence of the Vlasov–Poisson system to the incompressible Euler equations, Commun. Partial Differ. Equations, Volume 25 (2000) no. 3-4, pp. 737-754 | DOI | MR | Zbl
[10] On mean-field limits and quantitative estimates with a large class of singular kernels: application to the Patlak–Keller–Segel model, C. R. Math., Volume 357 (2019) no. 9, pp. 708-720 | DOI | Numdam | Zbl
[11] Modulated free energy and mean field limit, Sémin. Laurent Schwartz, EDP Appl., Volume 2019-2020 (2020), 2, 22 pages | Numdam | Zbl
[12] Mean field limit and quantitative estimates with singular attractive kernels, Duke Math. J., Volume 172 (2023) no. 13, pp. 2591-2641 | MR | Zbl
[13] Monotonicity properties of optimal transportation and the FKG and related inequalities, Commun. Math. Phys., Volume 214 (2000) no. 3, pp. 547-563 | DOI | MR | Zbl
[14] Erratum: “Monotonicity of optimal transportation and the FKG and related inequalities” [Comm. Math. Phys. 214 (2000), no. 3, 547–563; MR1800860 (2002c:60029)], Commun. Math. Phys., Volume 225 (2002) no. 2, pp. 449-450
[15] On Poincaré and logarithmic Sobolev inequalities for a class of singular Gibbs measures, Geometric aspects of functional analysis. Israel seminar (GAFA) 2017–2019. Volume 1 (Lecture Notes in Mathematics), Volume 2256, Springer, 2020, pp. 219-246 | DOI | Zbl
[16] Propagation of chaos: a review of models, methods and applications (2021) | arXiv
[17] On the global convergence of gradient descent for over-parameterized models using optimal transport, Proceedings of the 32nd International Conference on Neural Information Processing Systems, NIPS18, Curran Associates, Inc., 2018, pp. 3040-3050
[18] The attractive log gas: stability, uniqueness, and propagation of chaos (2023) | arXiv
[19] Sharp uniform-in-time mean-field convergence for singular periodic Riesz flows, Ann. Inst. Henri Poincaré C, Anal. Non Linéaire, Volume 42 (2025) no. 2, pp. 391-472 | DOI | MR | Zbl
[20] Phase transitions, logarithmic Sobolev inequalities, and uniform-in-time propagation of chaos for weakly interacting diffusions, Commun. Math. Phys., Volume 401 (2023) no. 1, pp. 275-323 | DOI | MR | Zbl
[21] Mean-field limits for some Riesz interaction gradient flows, SIAM J. Math. Anal., Volume 43 (2016) no. 2, pp. 2269-2300 | DOI | MR | Zbl
[22] A proof of the Caffarelli contraction theorem via entropic regularization, Calc. Var. Partial Differ. Equ., Volume 59 (2020) no. 3, 96, 18 pages | MR | Zbl
[23] Logarithmic Sobolev inequalities, Am. J. Math., Volume 97 (1975) no. 4, pp. 1061-1083 | DOI | MR | Zbl
[24] A two-scale approach to logarithmic Sobolev inequalities and the hydrodynamic limit, Ann. Inst. Henri Poincaré, Probab. Stat., Volume 45 (2009) no. 2, pp. 302-351 | Numdam | MR | Zbl
[25] On systems of particles in singular repulsive interaction in dimension one: log and Riesz gas, J. Éc. Polytech., Math., Volume 10 (2023), pp. 867-916 | DOI | MR | Zbl
[26] Uniform in time propagation of chaos for the 2d vortex model and other singular stochastic systems, J. Eur. Math. Soc. (2024) (Online First. doi:10.4171/JEMS/1413) | DOI | MR | Zbl
[27] Uniform Poincaré and logarithmic Sobolev inequalities for mean field particle systems, Ann. Appl. Probab., Volume 32 (2022) no. 3, pp. 1590-1614 | MR | Zbl
[28] On Kac’s chaos and related problems, J. Funct. Anal., Volume 266 (2014) no. 10, pp. 6055-6157 | DOI | MR | Zbl
[29] The modulated free energy method on (in preparation)
[30] Mean field limit for stochastic particle systems, Active Particles, Volume 1. Advances in Theory, Models, and Applications (Modeling and Simulation in Science, Engineering and Technology), Birkhäuser/Springer, 2017, pp. 379-402
[31] Quantitative estimates of propagation of chaos for stochastic systems with kernels, Invent. Math., Volume 214 (2018) no. 1, pp. 523-591 | DOI | MR | Zbl
[32] Quantitative approximate independence for continuous mean field Gibbs measures, Electron. J. Probab., Volume 27 (2022), 15, 21 pages | MR | Zbl
[33] Hierarchies, entropy, and quantitative propagation of chaos for mean field diffusions, Probab. Math. Phys., Volume 4 (2023) no. 2, pp. 377-432 | DOI | MR | Zbl
[34] Sharp uniform-in-time propagation of chaos, Probab. Theory Relat. Fields, Volume 187 (2023) no. 1-2, pp. 443-480 | DOI | MR | Zbl
[35] Fluctuations of two dimensional Coulomb gases, Geom. Funct. Anal., Volume 28 (2018) no. 2, pp. 443-508 | DOI | MR | Zbl
[36] Quantitative propagation of chaos in a bimolecular chemical reaction-diffusion model, SIAM J. Math. Anal., Volume 52 (2020) no. 2, pp. 2098-2133 | MR | Zbl
[37] Generation and propagation of chaos in the stochastic Kac model, 2023 (talk at Rutgers)
[38] Mean-field theory of two-layers neural networks: dimension-free bounds and kernel limit, Proceedings of the Thirty-Second Conference on Learning Theory (Alina Beygelzimer; Daniel Hsu, eds.) (Proceedings of Machine Learning Research), Volume 99, 2019, pp. 2388-2464
[39] Mean-field limits of Riesz-type singular flows, Ars Inven. Anal. (2022), 4, 45 pages | DOI | MR
[40] Generalization of an inequality by Talagrand and links with the logarithmic Sobolev inequality, J. Funct. Anal., Volume 173 (2000) no. 3, pp. 361-400 | DOI | MR | Zbl
[41] Next order asymptotics and renormalized energy for Riesz interactions, J. Inst. Math. Jussieu, Volume 16 (2017) no. 3, pp. 501-569 | DOI | MR | Zbl
[42] The mean-field approximation for higher-dimensional Coulomb flows in the scaling-critical space, Nonlinearity, Volume 35 (2022) no. 6, pp. 2722-2766 | DOI | MR | Zbl
[43] Mean-field convergence of point vortices to the incompressible Euler equation with vorticity in , Arch. Ration. Mech. Anal., Volume 243 (2022) no. 3, pp. 1361-1431 | DOI | MR | Zbl
[44] On the rigorous derivation of the incompressible Euler equation from Newton’s second law, Lett. Math. Phys., Volume 113 (2023) no. 1, 13, 32 pages | MR | Zbl
[45] Remarks on the logarithmic Sobolev inequality for the Kuramoto model, 2023 (available at https://cmu.box.com/s/s2pmhykuolezwkjn65kt6loa70jt93ul)
[46] Global-in-time mean-field convergence for singular Riesz-type diffusive flows, Ann. Appl. Probab., Volume 33 (2023) no. 2, pp. 754-798 | MR
[47] Sharp commutator estimates of all order for Coulomb and Riesz modulated energies (2024) | arXiv | Zbl
[48] Trainability and accuracy of artificial neural networks: an interacting particle system approach, Commun. Pure Appl. Math., Volume 75 (2022) no. 9, pp. 1889-1935 | DOI | MR | Zbl
[49] Higher-dimensional Coulomb gases and renormalized energy functionals, Pure Appl. Math., Volume 69 (2016) no. 3, pp. 519-605 | DOI | MR | Zbl
[50] 2D Coulomb gases and the renormalized energy, Ann. Probab., Volume 43 (2015) no. 4, pp. 2026-2083 | MR | Zbl
[51] Mean field limit for Coulomb-type flows, Duke Math. J., Volume 169 (2020) no. 15, pp. 2887-2935 (appendix with Mitia Duerinckx) | MR | Zbl
[52] Gaussian fluctuations and free energy expansion for Coulomb gases at any temperature, Ann. Inst. Henri Poincaré, Probab. Stat., Volume 59 (2023) no. 2, pp. 1074-1142 | MR | Zbl
[53] Trend to equilibrium for dissipative equations, functional inequalities and mass transportation, Recent advances in the theory and applications of mass transport (Contemporary Mathematics), Volume 353, American Mathematical Society, 2004, pp. 95-109 | DOI | Zbl
[54] Dobrushin uniqueness theorem and logarithmic Sobolev inequalities, J. Funct. Anal., Volume 105 (1992) no. 1, pp. 77-111 | DOI | MR | Zbl
Cité par Sources :