We study the Gross–Pitaevskii equation in dimension two with periodic conditions in one direction, or equivalently on the product space $\mathbb{R} \times \mathbb{T}_L$ where $L > 0$ and $\mathbb{T}_L = \mathbb{R} / L \mathbb{Z}.$ We focus on the variational problem consisting in minimizing the Ginzburg–Landau energy under a fixed momentum constraint. We prove that there exists a threshold value for $L$ below which minimizers are the one-dimensional dark solitons, and above which no minimizer can be one-dimensional.
Nous considérons l’équation de Gross–Pitaevskii en dimension deux pour des fonctions périodiques dans une direction, soit de façon équivalente dans l’espace produit $\mathbb{R} \times \mathbb{T}_L$, où $L > 0$ et $\mathbb{T}_L = \mathbb{R} / L \mathbb{Z}$. Nous nous intéressons au problème variationnel qui consiste à minimiser l’équation de Ginzburg–Landau à moment fixé. Nous montrons qu’il existe une valeur critique pour la largeur $L$ en dessous de laquelle les minimiseurs sont les solitons sombres à une variable, et au-dessus de laquelle aucun minimiseur ne peut dépendre que d’une seule variable.
Accepté le :
Publié le :
André de Laire 1 ; Philippe Gravejat 2 ; Didier Smets 3

@article{AFST_2025_6_34_1_135_0, author = {Andr\'e de Laire and Philippe Gravejat and Didier Smets}, title = {Minimizing travelling waves for the {Gross{\textendash}Pitaevskii} equation on $\mathbb{R} \times \mathbb{T}$}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {135--192}, publisher = {Universit\'e Paul Sabatier, Toulouse}, volume = {Ser. 6, 34}, number = {1}, year = {2025}, doi = {10.5802/afst.1808}, language = {en}, url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1808/} }
TY - JOUR AU - André de Laire AU - Philippe Gravejat AU - Didier Smets TI - Minimizing travelling waves for the Gross–Pitaevskii equation on $\mathbb{R} \times \mathbb{T}$ JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2025 SP - 135 EP - 192 VL - 34 IS - 1 PB - Université Paul Sabatier, Toulouse UR - https://afst.centre-mersenne.org/articles/10.5802/afst.1808/ DO - 10.5802/afst.1808 LA - en ID - AFST_2025_6_34_1_135_0 ER -
%0 Journal Article %A André de Laire %A Philippe Gravejat %A Didier Smets %T Minimizing travelling waves for the Gross–Pitaevskii equation on $\mathbb{R} \times \mathbb{T}$ %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2025 %P 135-192 %V 34 %N 1 %I Université Paul Sabatier, Toulouse %U https://afst.centre-mersenne.org/articles/10.5802/afst.1808/ %R 10.5802/afst.1808 %G en %F AFST_2025_6_34_1_135_0
André de Laire; Philippe Gravejat; Didier Smets. Minimizing travelling waves for the Gross–Pitaevskii equation on $\mathbb{R} \times \mathbb{T}$. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 34 (2025) no. 1, pp. 135-192. doi : 10.5802/afst.1808. https://afst.centre-mersenne.org/articles/10.5802/afst.1808/
[1] Existence and properties of travelling waves for the Gross–Pitaevskii equation, Stationary and time dependent Gross–Pitaevskii equations (Alberto Farina; Jean-Claude Saut, eds.) (Contemporary Mathematics), Volume 473, American Mathematical Society, 2008, pp. 55-104 | DOI | Zbl
[2] Travelling waves for the Gross–Pitaevskii equation II, Commun. Math. Phys., Volume 285 (2009) no. 2, pp. 567-651 | DOI | MR | Zbl
[3] Orbital stability of the black soliton for the Gross–Pitaevskii equation, Indiana Univ. Math. J., Volume 57 (2008) no. 6, pp. 2611-2642 | DOI | MR | Zbl
[4] Stability in the energy space for chains of solitons of the one-dimensional Gross–Pitaevskii equation, Ann. Inst. Fourier, Volume 64 (2014) no. 1, pp. 19-70 | DOI | Numdam | MR | Zbl
[5] Asymptotic stability in the energy space for dark solitons of the Gross–Pitaevskii equation, Ann. Sci. Éc. Norm. Supér., Volume 48 (2015) no. 6, pp. 1327-1381 | DOI | Numdam | MR | Zbl
[6] Travelling waves for the Gross–Pitaevskii equation I, Ann. Inst. Henri Poincaré, Phys. Théor., Volume 70 (1999) no. 2, pp. 147-238 | Numdam | MR | Zbl
[7] Functional analysis, Sobolev spaces and partial differential equations, Universitext, Springer, 2011, xiii+599 pages | DOI | MR | Zbl
[8] The Cauchy problem for the Gross–Pitaevskii equation, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 23 (2006) no. 5, pp. 765-779 | DOI | Numdam | MR | Zbl
[9] The Gross–Pitaevskii equation in the energy space, Stationary and time dependent Gross–Pitaevskii equations (Alberto Farina; Jean-Claude Saut, eds.) (Contemporary Mathematics), Volume 473, American Mathematical Society, 2008, pp. 129-148 | DOI | Zbl
[10] Asymptotic stability of the black soliton for the Gross–Pitaevskii equation, Proc. Lond. Math. Soc. (3), Volume 111 (2015) no. 2, pp. 305-353 | DOI | MR | Zbl
[11] Hydrodynamics of a superfluid condensate, J. Math. Phys., Volume 4 (1963) no. 2, pp. 195-207 | DOI
[12] Dark optical solitons: physics and applications, Phys. Rep., Volume 298 (1998) no. 2-3, pp. 81-197 | DOI
[13] Construction of minimizing traveling waves for the Gross–Pitaevskii equation on , Tunis. J. Math., Volume 6 (2024) no. 1, pp. 157-188 | DOI | MR | Zbl
[14] Traveling waves for some nonlocal 1D Gross–Pitaevskii equations with nonzero conditions at infinity, Discrete Contin. Dyn. Syst., Volume 40 (2020) no. 1, pp. 635-682 | DOI | MR | Zbl
[15] Vortex lines in an imperfect Bose gas, Sov. Phys. JETP, Volume 13 (1961) no. 2, pp. 451-454
[16] Transverse nonlinear instability of solitary waves for some Hamiltonian PDE’s, J. Math. Pures Appl., Volume 90 (2008) no. 6, pp. 550-590 | DOI | MR | Zbl
[17] A simple criterion of transverse linear instability for solitary waves, Math. Res. Lett., Volume 17 (2010) no. 1, pp. 157-169 | DOI | MR | Zbl
[18] The nonlinear Schrödinger equation ground states on product spaces, Anal. PDE, Volume 7 (2014) no. 1, pp. 73-96 | DOI | MR | Zbl
Cité par Sources :