Spectral analysis of the discrete Maxwell operator: The limiting absorption principle
Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 34 (2025) no. 2, pp. 257-314.

We make the beginning of the spectral analysis of the anisotropic discrete Maxwell operator $\hat{H}^D$ defined on the square lattice $\mathbb{Z}^3$: we prove that the limiting absorption principle holds. To this aim we construct a conjugate operator to the Fourier series of $\hat{H}^D$ at any not-zero real value. In particular, we analyse the case of thresholds of $\hat{H}^D$.

Nous commençons l’analyse spectrale de l’opérateur de Maxwell discret anisotrope $\hat{H}^D$ défini sur le réseau carré $\mathbb{Z}^3$  : nous prouvons que le principe d’absorption limite est valable. Pour ce faire nous construisons un opérateur conjugué à la série de Fourier de $\hat{H}^D$, en toute valeur réelle non nulle. En particulier, le cas des seuils est résolu.

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/afst.1813
Classification : 35Q61, 47A10, 47B25
Keywords: Maxwell operator, spectral analysis, limiting absorption, threshold, Mourre estimate

Olivier Poisson 1

1 Aix-Marseille Université 3 Pl. Victor Hugo, 13331 Marseille, France
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{AFST_2025_6_34_2_257_0,
     author = {Olivier Poisson},
     title = {Spectral analysis of the discrete {Maxwell} operator:  {The} limiting absorption principle},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     pages = {257--314},
     publisher = {Universit\'e de Toulouse, Toulouse},
     volume = {Ser. 6, 34},
     number = {2},
     year = {2025},
     doi = {10.5802/afst.1813},
     language = {en},
     url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1813/}
}
TY  - JOUR
AU  - Olivier Poisson
TI  - Spectral analysis of the discrete Maxwell operator:  The limiting absorption principle
JO  - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY  - 2025
SP  - 257
EP  - 314
VL  - 34
IS  - 2
PB  - Université de Toulouse, Toulouse
UR  - https://afst.centre-mersenne.org/articles/10.5802/afst.1813/
DO  - 10.5802/afst.1813
LA  - en
ID  - AFST_2025_6_34_2_257_0
ER  - 
%0 Journal Article
%A Olivier Poisson
%T Spectral analysis of the discrete Maxwell operator:  The limiting absorption principle
%J Annales de la Faculté des sciences de Toulouse : Mathématiques
%D 2025
%P 257-314
%V 34
%N 2
%I Université de Toulouse, Toulouse
%U https://afst.centre-mersenne.org/articles/10.5802/afst.1813/
%R 10.5802/afst.1813
%G en
%F AFST_2025_6_34_2_257_0
Olivier Poisson. Spectral analysis of the discrete Maxwell operator:  The limiting absorption principle. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 34 (2025) no. 2, pp. 257-314. doi : 10.5802/afst.1813. https://afst.centre-mersenne.org/articles/10.5802/afst.1813/

[1] Shmuel Agmon Spectral properties of Schrödinger operators and scattering theory, Ann. Sc. Norm. Super. Pisa, Cl. Sci. (4), Volume 2 (1975), pp. 151-218 | Numdam | MR | Zbl

[2] Shmuel Agmon; Lars Hörmander Asymptotic properties of solutions of differential equations with simple characteristics, Anal. Math., Volume 30 (1976), pp. 1-38 | DOI | Zbl

[3] Werner O. Amrein; Anne Boutet de Monvel; Vladimir Georgescu C 0 -Groups, Commutator Methods and Spectral Theory of N-Body Hamiltonians, Progress in Mathematics, 135, Birkhäuser, 1996 | DOI | MR | Zbl

[4] Kazunori Ando; Hiroshi Isozaki; Hisashi Morioka Spectral properties of Schrödinger operators on perturbed lattices, Ann. Henri Poincaré, Volume 17 (2016) no. 8, pp. 2103-2171 | DOI | MR | Zbl

[5] Anne Boutet de Monvel-Berthier; Vladimir Georgescu; Marius Mantoiu Locally smooth operators and the limiting absorption principle for N-body Hamiltonians, Rev. Math. Phys., Volume 5 (1993) no. 1, pp. 105-189 | DOI | MR | Zbl

[6] Richard Froese; Ira Herbst A new proof of the Mourre estimate, Duke Math. J., Volume 49 (1982), pp. 1075-1085 | DOI | MR | Zbl

[7] Vladimir Georgescu; Christian Gérard; Jacob S. Møller Commutators, C 0 -semigroups and resolvent estimates, J. Funct. Anal., Volume 216 (2004), pp. 303-361 | DOI | MR | Zbl

[8] Christian Gérard; Francis Nier The Mourre theory for analytically fibered operators, J. Funct. Anal., Volume 152 (1998) no. 1, pp. 202-219 | DOI | MR | Zbl

[9] Christian Gérard; Francis Nier Mourre theory for analytically fibered operators revisited (2024) (https://arxiv.org/abs/2310.01094v2)

[10] Volker Hardt; Ekkehard Wagenführer Spectral properties of a multiplication operator, Math. Nachr., Volume 178 (1996), pp. 135-156 | DOI | MR | Zbl

[11] Lars Hörmander The analysis of linear partial differential operators. II: Differential operators with constant coefficients, Grundlehren der Mathematischen Wissenschaften, 257, Springer, 1983 | MR | Zbl

[12] Lars Hörmander The analysis of linear partial differential operators. III: Pseudo-differential operators, Grundlehren der Mathematischen Wissenschaften, 274, Springer, 1985 | MR | Zbl

[13] Hiroshi Isozaki; Arne Jensen Continuum limit for lattice Schrödinger operators, Rev. Math. Phys., Volume 34 (2022) no. 2, 2250001, 50 pages | DOI | MR | Zbl

[14] Hiroshi Isozaki; Evgeny Korotyaev Inverse problems, trace formulae for discrete Schrödinger operators, Ann. Henri Poincaré, Volume 13 (2012) no. 4, pp. 751-788 | DOI | MR | Zbl

[15] Hiroshi Isozaki; Hisashi Morioka A Rellich type theorem for discrete Schrödinger operators, 8, 2014 no. 2, pp. 475-489 | DOI | Zbl

[16] Hiroshi Isozaki; Hisashi Morioka Inverse scattering at a fixed energy for Discrete Schrödinger Operators on the square lattice, Ann. Inst. Fourier, Volume 65 (2015) no. 3, pp. 1153-1200 | DOI | Numdam | MR | Zbl

[17] Arne Jensen; Éric Mourre; Peter A. Perry Multiple commutator estimates and resolvent smoothness in quantum scattering theory, Ann. Inst. Henri Poincaré, Phys. Théor., Volume 41 (1984), pp. 207-225 | Numdam | MR | Zbl

[18] Éric Mourre Absence of singular continuous spectrum for certain self-adjoint operators, Commun. Math. Phys., Volume 78 (1981), pp. 391-408 | DOI | MR | Zbl

[19] Éric Mourre Opérateurs conjugués et propriétés de propagation, Commun. Math. Phys., Volume 91 (1983), pp. 279-300 | DOI | MR | Zbl

[20] One-parameter semigroups of positive operators (Rainer Nagel, ed.), Lecture Notes in Mathematics, 1184, Springer, 1986 | DOI | MR | Zbl

[21] Peter A. Perry; Israel M. Sigal; Barry Simon Spectral analysis of N-body Schrödinger operators, Ann. Math. (2), Volume 114 (1981), pp. 519-567 | DOI | Zbl

[22] W. Shaban; Boris Vainberg Radiation conditions for the difference Schrödinger operators, Appl. Anal., Volume 80 (2001) no. 3-4, pp. 525-556 | DOI | MR | Zbl

Cité par Sources :