We make the beginning of the spectral analysis of the anisotropic discrete Maxwell operator $\hat{H}^D$ defined on the square lattice $\mathbb{Z}^3$: we prove that the limiting absorption principle holds. To this aim we construct a conjugate operator to the Fourier series of $\hat{H}^D$ at any not-zero real value. In particular, we analyse the case of thresholds of $\hat{H}^D$.
Nous commençons l’analyse spectrale de l’opérateur de Maxwell discret anisotrope $\hat{H}^D$ défini sur le réseau carré $\mathbb{Z}^3$ : nous prouvons que le principe d’absorption limite est valable. Pour ce faire nous construisons un opérateur conjugué à la série de Fourier de $\hat{H}^D$, en toute valeur réelle non nulle. En particulier, le cas des seuils est résolu.
Accepté le :
Publié le :
Keywords: Maxwell operator, spectral analysis, limiting absorption, threshold, Mourre estimate
Olivier Poisson 1

@article{AFST_2025_6_34_2_257_0, author = {Olivier Poisson}, title = {Spectral analysis of the discrete {Maxwell} operator: {The} limiting absorption principle}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {257--314}, publisher = {Universit\'e de Toulouse, Toulouse}, volume = {Ser. 6, 34}, number = {2}, year = {2025}, doi = {10.5802/afst.1813}, language = {en}, url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1813/} }
TY - JOUR AU - Olivier Poisson TI - Spectral analysis of the discrete Maxwell operator: The limiting absorption principle JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2025 SP - 257 EP - 314 VL - 34 IS - 2 PB - Université de Toulouse, Toulouse UR - https://afst.centre-mersenne.org/articles/10.5802/afst.1813/ DO - 10.5802/afst.1813 LA - en ID - AFST_2025_6_34_2_257_0 ER -
%0 Journal Article %A Olivier Poisson %T Spectral analysis of the discrete Maxwell operator: The limiting absorption principle %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2025 %P 257-314 %V 34 %N 2 %I Université de Toulouse, Toulouse %U https://afst.centre-mersenne.org/articles/10.5802/afst.1813/ %R 10.5802/afst.1813 %G en %F AFST_2025_6_34_2_257_0
Olivier Poisson. Spectral analysis of the discrete Maxwell operator: The limiting absorption principle. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 34 (2025) no. 2, pp. 257-314. doi : 10.5802/afst.1813. https://afst.centre-mersenne.org/articles/10.5802/afst.1813/
[1] Spectral properties of Schrödinger operators and scattering theory, Ann. Sc. Norm. Super. Pisa, Cl. Sci. (4), Volume 2 (1975), pp. 151-218 | Numdam | MR | Zbl
[2] Asymptotic properties of solutions of differential equations with simple characteristics, Anal. Math., Volume 30 (1976), pp. 1-38 | DOI | Zbl
[3] -Groups, Commutator Methods and Spectral Theory of N-Body Hamiltonians, Progress in Mathematics, 135, Birkhäuser, 1996 | DOI | MR | Zbl
[4] Spectral properties of Schrödinger operators on perturbed lattices, Ann. Henri Poincaré, Volume 17 (2016) no. 8, pp. 2103-2171 | DOI | MR | Zbl
[5] Locally smooth operators and the limiting absorption principle for N-body Hamiltonians, Rev. Math. Phys., Volume 5 (1993) no. 1, pp. 105-189 | DOI | MR | Zbl
[6] A new proof of the Mourre estimate, Duke Math. J., Volume 49 (1982), pp. 1075-1085 | DOI | MR | Zbl
[7] Commutators, -semigroups and resolvent estimates, J. Funct. Anal., Volume 216 (2004), pp. 303-361 | DOI | MR | Zbl
[8] The Mourre theory for analytically fibered operators, J. Funct. Anal., Volume 152 (1998) no. 1, pp. 202-219 | DOI | MR | Zbl
[9] Mourre theory for analytically fibered operators revisited (2024) (https://arxiv.org/abs/2310.01094v2)
[10] Spectral properties of a multiplication operator, Math. Nachr., Volume 178 (1996), pp. 135-156 | DOI | MR | Zbl
[11] The analysis of linear partial differential operators. II: Differential operators with constant coefficients, Grundlehren der Mathematischen Wissenschaften, 257, Springer, 1983 | MR | Zbl
[12] The analysis of linear partial differential operators. III: Pseudo-differential operators, Grundlehren der Mathematischen Wissenschaften, 274, Springer, 1985 | MR | Zbl
[13] Continuum limit for lattice Schrödinger operators, Rev. Math. Phys., Volume 34 (2022) no. 2, 2250001, 50 pages | DOI | MR | Zbl
[14] Inverse problems, trace formulae for discrete Schrödinger operators, Ann. Henri Poincaré, Volume 13 (2012) no. 4, pp. 751-788 | DOI | MR | Zbl
[15] A Rellich type theorem for discrete Schrödinger operators, 8, 2014 no. 2, pp. 475-489 | DOI | Zbl
[16] Inverse scattering at a fixed energy for Discrete Schrödinger Operators on the square lattice, Ann. Inst. Fourier, Volume 65 (2015) no. 3, pp. 1153-1200 | DOI | Numdam | MR | Zbl
[17] Multiple commutator estimates and resolvent smoothness in quantum scattering theory, Ann. Inst. Henri Poincaré, Phys. Théor., Volume 41 (1984), pp. 207-225 | Numdam | MR | Zbl
[18] Absence of singular continuous spectrum for certain self-adjoint operators, Commun. Math. Phys., Volume 78 (1981), pp. 391-408 | DOI | MR | Zbl
[19] Opérateurs conjugués et propriétés de propagation, Commun. Math. Phys., Volume 91 (1983), pp. 279-300 | DOI | MR | Zbl
[20] One-parameter semigroups of positive operators (Rainer Nagel, ed.), Lecture Notes in Mathematics, 1184, Springer, 1986 | DOI | MR | Zbl
[21] Spectral analysis of N-body Schrödinger operators, Ann. Math. (2), Volume 114 (1981), pp. 519-567 | DOI | Zbl
[22] Radiation conditions for the difference Schrödinger operators, Appl. Anal., Volume 80 (2001) no. 3-4, pp. 525-556 | DOI | MR | Zbl
Cité par Sources :