Geometric optics expansions for quarter-space boundary value problems III: glancing modes and multiple self-interaction
Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 34 (2025) no. 2, pp. 413-499.

This article aims to continue the study of geometric optics expansions for hyperbolic boundary value problems in the quarter-space initiated in [2]. The motivations are linked to the range of effective applicability of the theorem establishing the existence of the geometric optics expansions. Compared to [2], we ameliorate the range of applicability by adding two distinct features. The first one is that now we can consider glancing modes in the expansions by using the results of [17]. The second one, which is proper to quarter-space problems, is that we can now consider rather “complicated” self-interaction phenomena. It is a first step in the study of geometric optics expansions in bounded domains. A direct consequence of the first point of amelioration is that no condition on glancing modes is required to intialize the construction of the geometric optics expansion. It seems to indicate that the expected condition characterizing the strong well-posedness of corner problems, established in [14], can be relaxed to the hyperbolic component of the stable subspace only.

Cet article vise à poursuivre l’étude des développements d’optique géométrique pour les problèmes aux limites hyperboliques posés dans un quart d’espace, étude initiée dans [2]. Les motivations sont ici liées au domaine d’applicabilité effective du théorème établissant l’existence de tels développements. Comparé à [2], nous avons amélioré le domaine d’applicabilité de deux façons distinctes. D’abord, nous pouvons maintenant considérer dans les développements des modes rasants en adaptant les résultats de [17]. Ensuite, ceci est propre à la géométrie du quart d’espace, nous pouvons maintenant considérer des phénomènes d’auto-interaction assez « complexes ». Ceci constitue une première étape nécessaire dans la construction de développements d’optique géométrique dans des géométries bornées. Une conséquence directe de notre nouvelle contribution est que, pour son initialisation, la résolution de la cascade d’équations ne nécessite pas de condition sur les modes rasants. Ceci semble indiquer que la condition que l’on croit caractériser les problèmes fortement bien-posés de [14] pourrait être relaxée sur les modes hyperboliques seulement.

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/afst.1817
Classification : 35L04, 35L50, 78A05
Keywords: hyperbolic boundary value problem, corner problem, geometric optics expansion, self-interaction, glancing modes

Antoine Benoit 1

1 Université du Littoral Côte d’Opale, LMPA, 50 rue Ferdinand Buisson CS 80699 62228 Calais, France
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{AFST_2025_6_34_2_413_0,
     author = {Antoine Benoit},
     title = {Geometric optics expansions for quarter-space boundary value problems {III:} glancing modes and multiple self-interaction},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     pages = {413--499},
     publisher = {Universit\'e de Toulouse, Toulouse},
     volume = {Ser. 6, 34},
     number = {2},
     year = {2025},
     doi = {10.5802/afst.1817},
     language = {en},
     url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1817/}
}
TY  - JOUR
AU  - Antoine Benoit
TI  - Geometric optics expansions for quarter-space boundary value problems III: glancing modes and multiple self-interaction
JO  - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY  - 2025
SP  - 413
EP  - 499
VL  - 34
IS  - 2
PB  - Université de Toulouse, Toulouse
UR  - https://afst.centre-mersenne.org/articles/10.5802/afst.1817/
DO  - 10.5802/afst.1817
LA  - en
ID  - AFST_2025_6_34_2_413_0
ER  - 
%0 Journal Article
%A Antoine Benoit
%T Geometric optics expansions for quarter-space boundary value problems III: glancing modes and multiple self-interaction
%J Annales de la Faculté des sciences de Toulouse : Mathématiques
%D 2025
%P 413-499
%V 34
%N 2
%I Université de Toulouse, Toulouse
%U https://afst.centre-mersenne.org/articles/10.5802/afst.1817/
%R 10.5802/afst.1817
%G en
%F AFST_2025_6_34_2_413_0
Antoine Benoit. Geometric optics expansions for quarter-space boundary value problems III: glancing modes and multiple self-interaction. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 34 (2025) no. 2, pp. 413-499. doi : 10.5802/afst.1817. https://afst.centre-mersenne.org/articles/10.5802/afst.1817/

[1] Antoine Benoit Problèmes aux limites, optique géométrique et singularités, Ph. D. Thesis, Université de Nantes, France (2015) (https://hal.archives-ouvertes.fr/tel-01180449v1)

[2] Antoine Benoit Geometric optics expansions for hyperbolic corner problems, I: Self-interaction phenomenon, Anal. PDE, Volume 9 (2016) no. 6, pp. 1359-1418 | DOI | MR | Zbl

[3] Antoine Benoit WKB expansions for hyperbolic boundary value problems in a strip: selfinteraction meets strong well-posedness, J. Inst. Math. Jussieu, Volume 19 (2020) no. 5, pp. 1629-1675 | DOI | MR | Zbl

[4] Antoine Benoit Persistence of regularity of the solution to a hyperbolic boundary value problem in domain with corner, J. Differ. Equations, Volume 378 (2024), pp. 94-170 | DOI | MR | Zbl

[5] Antoine Benoit; Romain Loyer Geometric optics expansion for weakly well-posed hyperbolic boundary value problem: the glancing degeneracy, Asymptotic Anal., Volume 134 (2023) no. 3-4, pp. 369-411 | DOI | MR | Zbl

[6] Laurence Halpern; Jeffrey Rauch Hyperbolic boundary value problems with trihedral corners, Discrete Contin. Dyn. Syst., Volume 8 (2016), pp. 4403-4450 | DOI | MR | Zbl

[7] Reuben Hersh Mixed problems in several variables, J. Math. Mech., Volume 12 (1963), pp. 317-334 | DOI | MR | Zbl

[8] Aimin Huang; Roger Temam The linear hyperbolic initial and boundary value problems in a domain with corners, Discrete Contin. Dyn. Syst., Ser. B, Volume 19 (2014) no. 6, pp. 1627-1665 | DOI | MR | Zbl

[9] Heinz-Otto Kreiss Initial boundary value problems for hyperbolic systems, Commun. Pure Appl. Math., Volume 23 (1970), pp. 277-298 | DOI | Zbl

[10] Peter D. Lax Asymptotic solutions of oscillatory initial value problems, Duke Math. J., Volume 24 (1957), pp. 627-646 | DOI | MR | Zbl

[11] Vincent Lescarret Wave transmission in dispersive media, Math. Models Methods Appl. Sci., Volume 17 (2007) no. 4, pp. 485-535 | DOI | MR | Zbl

[12] Guy Métivier The block structure condition for symmetric hyperbolic systems, Bull. Lond. Math. Soc., Volume 32 (2000) no. 6, pp. 689-702 | DOI | MR | Zbl

[13] Guy Métivier; Kevin Zumbrun Hyperbolic boundary value problems for symmetric systems with variable multiplicities, J. Differ. Equations, Volume 211 (2005) no. 1, pp. 61-134 | DOI | MR | Zbl

[14] Stanley Osher Initial-boundary value problems for hyperbolic systems in regions with corners. I, Trans. Am. Math. Soc., Volume 176 (1973), pp. 141-164 | DOI | MR | Zbl

[15] Leonard Sarason; Joel A. Smoller Geometrical optics and the corner problem, Arch. Ration. Mech. Anal., Volume 56 (1974), pp. 34-69 | DOI | MR | Zbl

[16] Mark Williams Nonlinear geometric optics for hyperbolic boundary problems, Commun. Partial Differ. Equations, Volume 21 (1996) no. 11-12, pp. 1829-1895 | DOI | MR | Zbl

[17] Mark Williams Boundary layers and glancing blow-up in nonlinear geometric optics, Ann. Sci. Éc. Norm. Supér. (4), Volume 33 (2000) no. 3, pp. 383-432 | DOI | Numdam | MR | Zbl

Cité par Sources :