We study here a 2D gyrokinetic model obtained in [5], which naturally appears as the limit of a Vlasov–Poisson system with a very large external uniform magnetic field in the finite Larmor radius regime, when the typical Larmor radius is of order of the Debye length. We show that the Cauchy problem for that system is well-posed in a suitable space, provided that the initial condition satisfies a standard uniform decay assumption in velocity. Our result relies on a stability estimate in Wasserstein distance of order one between two solutions of the system. That stability estimate directly implies the uniqueness (in an appropriate space) of solutions to the Cauchy problem. An extension of the stability estimate to the case of a regularized interaction allows to prove the existence of solutions, as limits of solutions of a similar system with regularized interactions.
Nous étudions ici un modèle gyrocinétique 2D obtenu dans [5], qui apparaît naturellement comme la limite d’un système de Vlasov–Poisson dans un champ magnétique externe très fort, quand le rayon de Larmor typique est de l’ordre de la longueur de Debye. Nous montrons que le problème de Cauchy associé est bien posé dans un espace fonctionnel adapté, à condition que la condition initiale satisfasse une hypothèse assez classique de décroissance polynomiale uniforme en vitesse. Notre résultat est basé sur une estimation de stabilité en distance de Wasserstein d’ordre un entre deux solutions du système. L’estimation de stabilité implique directement l’unicité des solutions au problème de Cauchy (dans un espace fonctionnel adapté). Une extension de l’estimation de stabilité aux cas d’interactions régularisées permet de prouver l’existence de solutions, comme limites de solutions de systèmes similaires avec interactions régularisées.
Accepté le :
Publié le :
Pierre-Antoine Giorgi 1 ; Maxime Hauray 2

@article{AFST_2025_6_34_2_501_0, author = {Pierre-Antoine Giorgi and Maxime Hauray}, title = {Well-posedness of a {2D} gyrokinetic model with equal {Debye} length and {Larmor} radius}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {501--537}, publisher = {Universit\'e de Toulouse, Toulouse}, volume = {Ser. 6, 34}, number = {2}, year = {2025}, doi = {10.5802/afst.1818}, language = {en}, url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1818/} }
TY - JOUR AU - Pierre-Antoine Giorgi AU - Maxime Hauray TI - Well-posedness of a 2D gyrokinetic model with equal Debye length and Larmor radius JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2025 SP - 501 EP - 537 VL - 34 IS - 2 PB - Université de Toulouse, Toulouse UR - https://afst.centre-mersenne.org/articles/10.5802/afst.1818/ DO - 10.5802/afst.1818 LA - en ID - AFST_2025_6_34_2_501_0 ER -
%0 Journal Article %A Pierre-Antoine Giorgi %A Maxime Hauray %T Well-posedness of a 2D gyrokinetic model with equal Debye length and Larmor radius %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2025 %P 501-537 %V 34 %N 2 %I Université de Toulouse, Toulouse %U https://afst.centre-mersenne.org/articles/10.5802/afst.1818/ %R 10.5802/afst.1818 %G en %F AFST_2025_6_34_2_501_0
Pierre-Antoine Giorgi; Maxime Hauray. Well-posedness of a 2D gyrokinetic model with equal Debye length and Larmor radius. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 34 (2025) no. 2, pp. 501-537. doi : 10.5802/afst.1818. https://afst.centre-mersenne.org/articles/10.5802/afst.1818/
[1] A user’s guide to optimal transport, CIME summer school, Italy (2009) (https://hal.archives-ouvertes.fr/hal-00769391)
[2] A Vlasov equation with Dirac potential used in fusion plasmas, J. Math. Phys., Volume 53 (2012) no. 11, 115621, 16 pages | DOI | MR | Zbl
[3] The Vlasov–Poisson system with strong external magnetic field. Finite Larmor radius regime, Asymptotic Anal., Volume 61 (2009) no. 2, pp. 91-123 | DOI | MR | Zbl
[4] The effective Vlasov–Poisson system for the finite Larmor radius regime, Multiscale Model. Simul., Volume 14 (2016) no. 4, pp. 1238-1275 | DOI | MR | Zbl
[5] Le système de Vlasov–Poisson effectif pour les plasmas fortement magnétisés, C. R., Math., Acad. Sci. Paris, Volume 354 (2016) no. 8, pp. 771-777 | DOI | Numdam | MR | Zbl
[6] Two-dimensional finite Larmor radius approximation in canonical gyrokinetic coordinates, J. Pure Appl. Math., Adv. Appl., Volume 4 (2010) no. 2, pp. 135-169 | MR | Zbl
[7] Homogenization of the Vlasov equation and of the Vlasov–Poisson system with a strong external magnetic field, Asymptotic Anal., Volume 18 (1998) no. 3-4, pp. 193-213 | DOI | MR | Zbl
[8] The finite Larmor radius approximation, SIAM J. Math. Anal., Volume 32 (2001) no. 6, pp. 1227-1247 | DOI | MR | Zbl
[9] A 5D gyrokinetic full- global semi-Lagrangian code for flux-driven ion turbulence simulations, Comput. Phys. Commun., Volume 207 (2016), pp. 35-68 | DOI | MR | Zbl
[10] Effect of the polarization drift in a strongly magnetized plasma, ESAIM, Math. Model. Numer. Anal., Volume 46 (2012) no. 4, pp. 929-947 | DOI | Numdam | MR | Zbl
[11] Limite quasi neutre pour Vlasov–Poisson avec des données stables au sens de Penrose, Ann. Sci. Éc. Norm. Supér. (4), Volume 49 (2016) no. 6, pp. 1445-1495 | DOI | Zbl
[12] Mean field limit for the one dimensional Vlasov–Poisson equation, Sémin. Laurent Schwartz, EDP Appl., Volume 2012-2013 (2014), 21, 16 pages | DOI | Zbl
[13] Differential equations, dynamical systems, and linear algebra, Pure and Applied Mathematics, 60, Academic Press Inc., 1974 | MR | Zbl
[14] Uniqueness and stability for the Vlasov–Poisson system with spatial density in Orlicz spaces, Mathematical analysis in fluid mechanics: selected recent results (Contemporary Mathematics), Volume 710, American Mathematical Society, 2018, pp. 145-162 | DOI | Zbl
[15] On the asymptotic growth of the solutions of the Vlasov–Poisson system, Math. Methods Appl. Sci., Volume 16 (1993) no. 2, pp. 75-85 | DOI | MR | Zbl
[16] Propagation of moments and regularity for the 3-dimensional Vlasov–Poisson system, Invent. Math., Volume 105 (1991) no. 1, pp. 415-430 | DOI | MR | Zbl
[17] Uniqueness of the solution to the Vlasov–Poisson system with bounded density, J. Math. Pures Appl. (9), Volume 86 (2006) no. 1, pp. 68-79 | DOI | MR | Zbl
[18] Vorticity and incompressible flow, Cambridge Texts in Applied Mathematics, Cambridge University Press, 2002 | DOI | MR | Zbl
[19] Mathematical theory of incompressible nonviscous fluids, Applied Mathematical Sciences, 96, Springer, 1994 | DOI | MR | Zbl
[20] A uniqueness criterion for unbounded solutions to the Vlasov–Poisson system, Commun. Math. Phys., Volume 346 (2016) no. 2, pp. 469-482 | DOI | MR | Zbl
[21] Moment propagation for weak solutions to the Vlasov–Poisson system, Commun. Partial Differ. Equations, Volume 37 (2012) no. 7, pp. 1273-1285 | DOI | MR | Zbl
[22] Electrostatic instabilities of a uniform non‐Maxwellian plasma, Phys. Fluids, Volume 3 (1960) no. 2, pp. 258-265 | DOI | Zbl
[23] Global classical solutions of the Vlasov–Poisson system in three dimensions for general initial data, J. Differ. Equations, Volume 95 (1992) no. 2, pp. 281-303 | DOI | MR | Zbl
[24] Transport equations with unbounded force fields and application to the Vlasov–Poisson equation, Math. Models Methods Appl. Sci., Volume 19 (2009) no. 2, pp. 199-228 | DOI | MR | Zbl
[25] On classical solutions in the large in time of two-dimensional Vlasov’s equation, Osaka J. Math., Volume 15 (1978) no. 2, pp. 245-261 | MR | Zbl
[26] Topics in optimal transportation, Graduate Studies in Mathematics, 58, American Mathematical Society, 2003 | MR | Zbl
[27] Optimal transport. Old and new, Grundlehren der Mathematischen Wissenschaften, 338, Springer, 2009 | DOI | MR | Zbl
Cité par Sources :