Well-posedness of a 2D gyrokinetic model with equal Debye length and Larmor radius
Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 34 (2025) no. 2, pp. 501-537.

We study here a 2D gyrokinetic model obtained in [5], which naturally appears as the limit of a Vlasov–Poisson system with a very large external uniform magnetic field in the finite Larmor radius regime, when the typical Larmor radius is of order of the Debye length. We show that the Cauchy problem for that system is well-posed in a suitable space, provided that the initial condition satisfies a standard uniform decay assumption in velocity. Our result relies on a stability estimate in Wasserstein distance of order one between two solutions of the system. That stability estimate directly implies the uniqueness (in an appropriate space) of solutions to the Cauchy problem. An extension of the stability estimate to the case of a regularized interaction allows to prove the existence of solutions, as limits of solutions of a similar system with regularized interactions.

Nous étudions ici un modèle gyrocinétique 2D obtenu dans [5], qui apparaît naturellement comme la limite d’un système de Vlasov–Poisson dans un champ magnétique externe très fort, quand le rayon de Larmor typique est de l’ordre de la longueur de Debye. Nous montrons que le problème de Cauchy associé est bien posé dans un espace fonctionnel adapté, à condition que la condition initiale satisfasse une hypothèse assez classique de décroissance polynomiale uniforme en vitesse. Notre résultat est basé sur une estimation de stabilité en distance de Wasserstein d’ordre un entre deux solutions du système. L’estimation de stabilité implique directement l’unicité des solutions au problème de Cauchy (dans un espace fonctionnel adapté). Une extension de l’estimation de stabilité aux cas d’interactions régularisées permet de prouver l’existence de solutions, comme limites de solutions de systèmes similaires avec interactions régularisées.

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/afst.1818

Pierre-Antoine Giorgi 1 ; Maxime Hauray 2

1 Laboratoire GAATI, Université de la Polynésie française, BP 6570, 98702 Faaa, French Polynesia
2 Institut de Mathématiques de Marseille, Université d’Aix Marseille, 3 place Victor Hugo, Case 19, 13331 Marseille Cédex 3, France
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{AFST_2025_6_34_2_501_0,
     author = {Pierre-Antoine Giorgi and Maxime Hauray},
     title = {Well-posedness of a {2D} gyrokinetic model with equal {Debye} length and {Larmor} radius},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     pages = {501--537},
     publisher = {Universit\'e de Toulouse, Toulouse},
     volume = {Ser. 6, 34},
     number = {2},
     year = {2025},
     doi = {10.5802/afst.1818},
     language = {en},
     url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1818/}
}
TY  - JOUR
AU  - Pierre-Antoine Giorgi
AU  - Maxime Hauray
TI  - Well-posedness of a 2D gyrokinetic model with equal Debye length and Larmor radius
JO  - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY  - 2025
SP  - 501
EP  - 537
VL  - 34
IS  - 2
PB  - Université de Toulouse, Toulouse
UR  - https://afst.centre-mersenne.org/articles/10.5802/afst.1818/
DO  - 10.5802/afst.1818
LA  - en
ID  - AFST_2025_6_34_2_501_0
ER  - 
%0 Journal Article
%A Pierre-Antoine Giorgi
%A Maxime Hauray
%T Well-posedness of a 2D gyrokinetic model with equal Debye length and Larmor radius
%J Annales de la Faculté des sciences de Toulouse : Mathématiques
%D 2025
%P 501-537
%V 34
%N 2
%I Université de Toulouse, Toulouse
%U https://afst.centre-mersenne.org/articles/10.5802/afst.1818/
%R 10.5802/afst.1818
%G en
%F AFST_2025_6_34_2_501_0
Pierre-Antoine Giorgi; Maxime Hauray. Well-posedness of a 2D gyrokinetic model with equal Debye length and Larmor radius. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 34 (2025) no. 2, pp. 501-537. doi : 10.5802/afst.1818. https://afst.centre-mersenne.org/articles/10.5802/afst.1818/

[1] Luigi Ambrosio; Nicola Gigli A user’s guide to optimal transport, CIME summer school, Italy (2009) (https://hal.archives-ouvertes.fr/hal-00769391)

[2] Claude Bardos; Anne Nouri A Vlasov equation with Dirac potential used in fusion plasmas, J. Math. Phys., Volume 53 (2012) no. 11, 115621, 16 pages | DOI | MR | Zbl

[3] Mihaï Bostan The Vlasov–Poisson system with strong external magnetic field. Finite Larmor radius regime, Asymptotic Anal., Volume 61 (2009) no. 2, pp. 91-123 | DOI | MR | Zbl

[4] Mihaï Bostan; Aurélie Finot The effective Vlasov–Poisson system for the finite Larmor radius regime, Multiscale Model. Simul., Volume 14 (2016) no. 4, pp. 1238-1275 | DOI | MR | Zbl

[5] Mihaï Bostan; Aurélie Finot; Maxime Hauray Le système de Vlasov–Poisson effectif pour les plasmas fortement magnétisés, C. R., Math., Acad. Sci. Paris, Volume 354 (2016) no. 8, pp. 771-777 | DOI | Numdam | MR | Zbl

[6] Emmanuel Frénod; Alexandre Mouton Two-dimensional finite Larmor radius approximation in canonical gyrokinetic coordinates, J. Pure Appl. Math., Adv. Appl., Volume 4 (2010) no. 2, pp. 135-169 | MR | Zbl

[7] Emmanuel Frénod; Eric Sonnendrücker Homogenization of the Vlasov equation and of the Vlasov–Poisson system with a strong external magnetic field, Asymptotic Anal., Volume 18 (1998) no. 3-4, pp. 193-213 | DOI | MR | Zbl

[8] Emmanuel Frénod; Eric Sonnendrücker The finite Larmor radius approximation, SIAM J. Math. Anal., Volume 32 (2001) no. 6, pp. 1227-1247 | DOI | MR | Zbl

[9] Virginie Grandgirard; Jérémie Abiteboul; Julien Bigot; Thomas Cartier-Michaud; Nicolas Crouseilles; Guilhem Dif-Pradalier; C. Ehrlacher; Damien Esteve; Xavier Garbet; Philippe Ghendrih; Guillaume Latu; Michel Mehrenberger; Claudia Norscini; Chantal Passeron; Fabien Rozar; Yanick Sarazin; Eric Sonnendrücker; A. Strugarek; David Zarzoso A 5D gyrokinetic full-f global semi-Lagrangian code for flux-driven ion turbulence simulations, Comput. Phys. Commun., Volume 207 (2016), pp. 35-68 | DOI | MR | Zbl

[10] Daniel Han-Kwan Effect of the polarization drift in a strongly magnetized plasma, ESAIM, Math. Model. Numer. Anal., Volume 46 (2012) no. 4, pp. 929-947 | DOI | Numdam | MR | Zbl

[11] Daniel Han-Kwan; Frédéric Rousset Limite quasi neutre pour Vlasov–Poisson avec des données stables au sens de Penrose, Ann. Sci. Éc. Norm. Supér. (4), Volume 49 (2016) no. 6, pp. 1445-1495 | DOI | Zbl

[12] Maxime Hauray Mean field limit for the one dimensional Vlasov–Poisson equation, Sémin. Laurent Schwartz, EDP Appl., Volume 2012-2013 (2014), 21, 16 pages | DOI | Zbl

[13] Morris W. Hirsch; Stephen Smale Differential equations, dynamical systems, and linear algebra, Pure and Applied Mathematics, 60, Academic Press Inc., 1974 | MR | Zbl

[14] Thomas Holding; Evelyne Miot Uniqueness and stability for the Vlasov–Poisson system with spatial density in Orlicz spaces, Mathematical analysis in fluid mechanics: selected recent results (Contemporary Mathematics), Volume 710, American Mathematical Society, 2018, pp. 145-162 | DOI | Zbl

[15] Ernst Horst On the asymptotic growth of the solutions of the Vlasov–Poisson system, Math. Methods Appl. Sci., Volume 16 (1993) no. 2, pp. 75-85 | DOI | MR | Zbl

[16] Pierre-Louis Lions; Benoît Perthame Propagation of moments and regularity for the 3-dimensional Vlasov–Poisson system, Invent. Math., Volume 105 (1991) no. 1, pp. 415-430 | DOI | MR | Zbl

[17] Grégoire Loeper Uniqueness of the solution to the Vlasov–Poisson system with bounded density, J. Math. Pures Appl. (9), Volume 86 (2006) no. 1, pp. 68-79 | DOI | MR | Zbl

[18] Andrew J. Majda; Andrea L. Bertozzi Vorticity and incompressible flow, Cambridge Texts in Applied Mathematics, Cambridge University Press, 2002 | DOI | MR | Zbl

[19] Carlo Marchioro; Mario Pulvirenti Mathematical theory of incompressible nonviscous fluids, Applied Mathematical Sciences, 96, Springer, 1994 | DOI | MR | Zbl

[20] Evelyne Miot A uniqueness criterion for unbounded solutions to the Vlasov–Poisson system, Commun. Math. Phys., Volume 346 (2016) no. 2, pp. 469-482 | DOI | MR | Zbl

[21] Christophe Pallard Moment propagation for weak solutions to the Vlasov–Poisson system, Commun. Partial Differ. Equations, Volume 37 (2012) no. 7, pp. 1273-1285 | DOI | MR | Zbl

[22] Oliver Penrose Electrostatic instabilities of a uniform non‐Maxwellian plasma, Phys. Fluids, Volume 3 (1960) no. 2, pp. 258-265 | DOI | Zbl

[23] Klaus Pfaffelmoser Global classical solutions of the Vlasov–Poisson system in three dimensions for general initial data, J. Differ. Equations, Volume 95 (1992) no. 2, pp. 281-303 | DOI | MR | Zbl

[24] Delphine Salort Transport equations with unbounded force fields and application to the Vlasov–Poisson equation, Math. Models Methods Appl. Sci., Volume 19 (2009) no. 2, pp. 199-228 | DOI | MR | Zbl

[25] Seiji Ukai; Takayoshi Okabe On classical solutions in the large in time of two-dimensional Vlasov’s equation, Osaka J. Math., Volume 15 (1978) no. 2, pp. 245-261 | MR | Zbl

[26] Cédric Villani Topics in optimal transportation, Graduate Studies in Mathematics, 58, American Mathematical Society, 2003 | MR | Zbl

[27] Cédric Villani Optimal transport. Old and new, Grundlehren der Mathematischen Wissenschaften, 338, Springer, 2009 | DOI | MR | Zbl

Cité par Sources :