In this paper, we describe the moduli space of rank three parabolic logarithmic connections on the projective line with three poles for any local exponents. In particular, we show that the family of moduli spaces of rank three parabolic $\phi $-connections on the projective line with three poles is isomorphic to the family of $A^{(1)*}_2$-surfaces in Sakai’s classification of Painlevé equations. Through this description, we investigate the relation between the apparent singularities and underlying parabolic bundles.
Dans cet article, nous décrivons l’espace de modules des connexions logarithmiques paraboliques de rang trois sur la droite projective avec trois pôles pour des exposants locaux quelconques. En particulier, nous montrons que la famille des espaces de modules des $\phi $-connexions paraboliques de rang trois sur la droite projective à trois pôles est isomorphe à la famille des $A_2^{(1)*}$-surfaces dans la classification de Sakai des équations de Painlevé. Grâce à cette description, nous étudions la relation entre les singularités apparentes et les faisceaux paraboliques sous-jacents.
Accepté le :
Publié le :
Takafumi Matsumoto 1

@article{AFST_2025_6_34_3_657_0, author = {Takafumi Matsumoto}, title = {Moduli space of rank three logarithmic connections on the projective line with three poles}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {657--730}, publisher = {Universit\'e de Toulouse, Toulouse}, volume = {Ser. 6, 34}, number = {3}, year = {2025}, doi = {10.5802/afst.1821}, language = {en}, url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1821/} }
TY - JOUR AU - Takafumi Matsumoto TI - Moduli space of rank three logarithmic connections on the projective line with three poles JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2025 SP - 657 EP - 730 VL - 34 IS - 3 PB - Université de Toulouse, Toulouse UR - https://afst.centre-mersenne.org/articles/10.5802/afst.1821/ DO - 10.5802/afst.1821 LA - en ID - AFST_2025_6_34_3_657_0 ER -
%0 Journal Article %A Takafumi Matsumoto %T Moduli space of rank three logarithmic connections on the projective line with three poles %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2025 %P 657-730 %V 34 %N 3 %I Université de Toulouse, Toulouse %U https://afst.centre-mersenne.org/articles/10.5802/afst.1821/ %R 10.5802/afst.1821 %G en %F AFST_2025_6_34_3_657_0
Takafumi Matsumoto. Moduli space of rank three logarithmic connections on the projective line with three poles. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 34 (2025) no. 3, pp. 657-730. doi : 10.5802/afst.1821. https://afst.centre-mersenne.org/articles/10.5802/afst.1821/
[1] Compactifying the Picard Scheme, Adv. Math., Volume 35 (1980), pp. 50-112 | DOI | Zbl
[2] Moduli spaces of d-connections and difference Painleve equations, Duke Math. J., Volume 134 (2006) no. 2, pp. 515-556 | MR | Zbl
[3] On the moduli of -bundles with connections on , Int. Math. Res. Not., Volume 1997 (1997) no. 19, pp. 983-999 | DOI | MR | Zbl
[4] Quivers and difference Painlevé equations, Groups and symmetries (CRM Proceedings & Lecture Notes), Volume 47, American Mathematical Society, 2009, pp. 25-51 | DOI | Zbl
[5] Simply-laced isomonodromy systems, Publ. Math., Inst. Hautes Étud. Sci., Volume 116 (2012) no. 1, pp. 1-68 | DOI | Numdam | MR | Zbl
[6] Normal forms for rank two linear irregular differential equations and moduli spaces, Period. Math. Hung., Volume 84 (2022) no. 2, pp. 303-320 | DOI | MR | Zbl
[7] Diagrams and irregular connections on the Riemann sphere (2023) | arXiv
[8] Canonical structure and symmetries of the Schlesinger equations, Commun. Math. Phys., Volume 271 (2007) no. 2, pp. 289-373 | DOI | MR | Zbl
[9] Discrete Schlesinger transformations, their Hamiltonian formulation, and Difference Painlevé equations (2013) | arXiv | Zbl
[10] Geometric analysis of reductions from Schlesinger transformations to difference Painlevé equations, Algebraic and analytic aspects of integrable systems and Painlevé equations (Contemporary Mathematics), Volume 651, American Mathematical Society, 2015, pp. 87-124 | Zbl
[11] Flat parabolic vector bundles on elliptic curves, J. Reine Angew. Math., Volume 761 (2020), pp. 81-122 | DOI | MR | Zbl
[12] On the moduli of logarithmic connections on elliptic curves, Math. Z., Volume 301 (2022) no. 4, pp. 4079-4118 | DOI | MR | Zbl
[13] Algebraic geometry, Graduate Texts in Mathematics, 52, Springer, 1977 | DOI | MR | Zbl
[14] Moduli spaces of meromorphic connections and quiver varieties, Adv. Math., Volume 266 (2014), pp. 120-151 | DOI | MR | Zbl
[15] Moduli of parabolic connections on curves and the Riemann–Hilbert correspondence, J. Algebr. Geom., Volume 22 (2013) no. 3, pp. 407-480 | DOI | MR | Zbl
[16] Moduli of stable parabolic connections, Riemann–Hilbert correspondence and geometry of Painlevé equation of type VI. I, Publ. Res. Inst. Math. Sci., Volume 42 (2006) no. 4, pp. 987-1089 | DOI | MR | Zbl
[17] Moduli of stable parabolic connections, Riemann–Hilbert correspondence and geometry of Painlevé equation of type VI. II, Moduli spaces and arithmetic geometry (Advanced Studies in Pure Mathematics), Volume 45, Mathematical Society of Japan, 2006, pp. 387-432 | DOI | Zbl
[18] Canonical coordinates for moduli spaces of rank two irregular connections on curves (2023) | arXiv | Zbl
[19] Explicit description of jumping phenomena on moduli spaces of parabolic connections and Hilbert schemes of points on surfaces, Kyoto J. Math., Volume 59 (2019) no. 3, pp. 515-552 | MR | Zbl
[20] Lagrangian fibrations in duality on moduli spaces of rank 2 logarithmic connections over the projective line, Int. Math. Res. Not., Volume 2015 (2015) no. 4, pp. 995-1043 | DOI | MR | Zbl
[21] Birational description of moduli spaces of rank 2 logarithmic connections (2021) | arXiv | Zbl
[22] Geometric invariant theory, Ergebnisse der Mathematik und ihrer Grenzgebiete. 2. Folge, 34, Springer, 1993 | MR | Zbl
[23] Isomonodromic deformations of -Fuchsian systems on the Riemann sphere, Mosc. Math. J., Volume 5 (2005) no. 2, pp. 415-441 | DOI | MR | Zbl
[24] On apparent singularities and canonical coordinates for moduli spaces of connections (in preparation)
[25] Rational surfaces associated with affine root systems and geometry of the Painlevé equations, Commun. Math. Phys., Volume 220 (2001) no. 1, pp. 165-229 | DOI | MR | Zbl
[26] Problem: discrete Painlevé equations and their Lax forms, RIMS Kôkyûroku Bessatsu, Volume B2 (2007), pp. 195-208 | MR | Zbl
[27] Moduli of stable pairs, J. Math. Kyoto Univ., Volume 31 (1991) no. 1, pp. 311-327 | MR | Zbl
Cité par Sources :