Moduli space of rank three logarithmic connections on the projective line with three poles
Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 34 (2025) no. 3, pp. 657-730.

In this paper, we describe the moduli space of rank three parabolic logarithmic connections on the projective line with three poles for any local exponents. In particular, we show that the family of moduli spaces of rank three parabolic $\phi $-connections on the projective line with three poles is isomorphic to the family of $A^{(1)*}_2$-surfaces in Sakai’s classification of Painlevé equations. Through this description, we investigate the relation between the apparent singularities and underlying parabolic bundles.

Dans cet article, nous décrivons l’espace de modules des connexions logarithmiques paraboliques de rang trois sur la droite projective avec trois pôles pour des exposants locaux quelconques. En particulier, nous montrons que la famille des espaces de modules des $\phi $-connexions paraboliques de rang trois sur la droite projective à trois pôles est isomorphe à la famille des $A_2^{(1)*}$-surfaces dans la classification de Sakai des équations de Painlevé. Grâce à cette description, nous étudions la relation entre les singularités apparentes et les faisceaux paraboliques sous-jacents.

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/afst.1821

Takafumi Matsumoto 1

1 Research Institute for Mathematical Sciences, Kyoto University, Kyoto 606-8512, Japan
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{AFST_2025_6_34_3_657_0,
     author = {Takafumi Matsumoto},
     title = {Moduli space of rank three logarithmic connections on the projective line with three poles},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     pages = {657--730},
     publisher = {Universit\'e de Toulouse, Toulouse},
     volume = {Ser. 6, 34},
     number = {3},
     year = {2025},
     doi = {10.5802/afst.1821},
     language = {en},
     url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1821/}
}
TY  - JOUR
AU  - Takafumi Matsumoto
TI  - Moduli space of rank three logarithmic connections on the projective line with three poles
JO  - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY  - 2025
SP  - 657
EP  - 730
VL  - 34
IS  - 3
PB  - Université de Toulouse, Toulouse
UR  - https://afst.centre-mersenne.org/articles/10.5802/afst.1821/
DO  - 10.5802/afst.1821
LA  - en
ID  - AFST_2025_6_34_3_657_0
ER  - 
%0 Journal Article
%A Takafumi Matsumoto
%T Moduli space of rank three logarithmic connections on the projective line with three poles
%J Annales de la Faculté des sciences de Toulouse : Mathématiques
%D 2025
%P 657-730
%V 34
%N 3
%I Université de Toulouse, Toulouse
%U https://afst.centre-mersenne.org/articles/10.5802/afst.1821/
%R 10.5802/afst.1821
%G en
%F AFST_2025_6_34_3_657_0
Takafumi Matsumoto. Moduli space of rank three logarithmic connections on the projective line with three poles. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 34 (2025) no. 3, pp. 657-730. doi : 10.5802/afst.1821. https://afst.centre-mersenne.org/articles/10.5802/afst.1821/

[1] Allen B. Altman; Steven L. Kleiman Compactifying the Picard Scheme, Adv. Math., Volume 35 (1980), pp. 50-112 | DOI | Zbl

[2] Dima Arinkin; Alexei Borodin Moduli spaces of d-connections and difference Painleve equations, Duke Math. J., Volume 134 (2006) no. 2, pp. 515-556 | MR | Zbl

[3] Dima Arinkin; Sergey Lysenko On the moduli of SL(2)-bundles with connections on 1 {x 1 ,...,x 4 }, Int. Math. Res. Not., Volume 1997 (1997) no. 19, pp. 983-999 | DOI | MR | Zbl

[4] Philip Boalch Quivers and difference Painlevé equations, Groups and symmetries (CRM Proceedings & Lecture Notes), Volume 47, American Mathematical Society, 2009, pp. 25-51 | DOI | Zbl

[5] Philip Boalch Simply-laced isomonodromy systems, Publ. Math., Inst. Hautes Étud. Sci., Volume 116 (2012) no. 1, pp. 1-68 | DOI | Numdam | MR | Zbl

[6] Karamoko Diarra; Frank Loray Normal forms for rank two linear irregular differential equations and moduli spaces, Period. Math. Hung., Volume 84 (2022) no. 2, pp. 303-320 | DOI | MR | Zbl

[7] Jean Douçot Diagrams and irregular connections on the Riemann sphere (2023) | arXiv

[8] Boris Dubrovin; Marta Mazzocco Canonical structure and symmetries of the Schlesinger equations, Commun. Math. Phys., Volume 271 (2007) no. 2, pp. 289-373 | DOI | MR | Zbl

[9] Anton Dzhamay; Hidetaka Sakai; Tomoyuki Takenawa Discrete Schlesinger transformations, their Hamiltonian formulation, and Difference Painlevé equations (2013) | arXiv | Zbl

[10] Anton Dzhamay; Tomoyuki Takenawa Geometric analysis of reductions from Schlesinger transformations to difference Painlevé equations, Algebraic and analytic aspects of integrable systems and Painlevé equations (Contemporary Mathematics), Volume 651, American Mathematical Society, 2015, pp. 87-124 | Zbl

[11] Thiago Fassarella; Frank Loray Flat parabolic vector bundles on elliptic curves, J. Reine Angew. Math., Volume 761 (2020), pp. 81-122 | DOI | MR | Zbl

[12] Thiago Fassarella; Frank Loray; Alan Muniz On the moduli of logarithmic connections on elliptic curves, Math. Z., Volume 301 (2022) no. 4, pp. 4079-4118 | DOI | MR | Zbl

[13] Robin Hartshorne Algebraic geometry, Graduate Texts in Mathematics, 52, Springer, 1977 | DOI | MR | Zbl

[14] Kazuki Hiroe; Daisuke Yamakawa Moduli spaces of meromorphic connections and quiver varieties, Adv. Math., Volume 266 (2014), pp. 120-151 | DOI | MR | Zbl

[15] Michi-Aki Inaba Moduli of parabolic connections on curves and the Riemann–Hilbert correspondence, J. Algebr. Geom., Volume 22 (2013) no. 3, pp. 407-480 | DOI | MR | Zbl

[16] Michi-Aki Inaba; Katsunori Iwasaki; Masa-Hiko Saito Moduli of stable parabolic connections, Riemann–Hilbert correspondence and geometry of Painlevé equation of type VI. I, Publ. Res. Inst. Math. Sci., Volume 42 (2006) no. 4, pp. 987-1089 | DOI | MR | Zbl

[17] Michi-Aki Inaba; Katsunori Iwasaki; Masa-Hiko Saito Moduli of stable parabolic connections, Riemann–Hilbert correspondence and geometry of Painlevé equation of type VI. II, Moduli spaces and arithmetic geometry (Advanced Studies in Pure Mathematics), Volume 45, Mathematical Society of Japan, 2006, pp. 387-432 | DOI | Zbl

[18] Arata Komyo; Frank Loray; Masa-Hiko Saito; Szilard Szabo Canonical coordinates for moduli spaces of rank two irregular connections on curves (2023) | arXiv | Zbl

[19] Arata Komyo; Masa-Hiko Saito Explicit description of jumping phenomena on moduli spaces of parabolic connections and Hilbert schemes of points on surfaces, Kyoto J. Math., Volume 59 (2019) no. 3, pp. 515-552 | MR | Zbl

[20] Frank Loray; Masa-Hiko Saito Lagrangian fibrations in duality on moduli spaces of rank 2 logarithmic connections over the projective line, Int. Math. Res. Not., Volume 2015 (2015) no. 4, pp. 995-1043 | DOI | MR | Zbl

[21] Takafumi Matsumoto Birational description of moduli spaces of rank 2 logarithmic connections (2021) | arXiv | Zbl

[22] David Mumford; John Fogarty; Frances Kirwan Geometric invariant theory, Ergebnisse der Mathematik und ihrer Grenzgebiete. 2. Folge, 34, Springer, 1993 | MR | Zbl

[23] Sergey Oblezin Isomonodromic deformations of 𝔰𝔩(2)-Fuchsian systems on the Riemann sphere, Mosc. Math. J., Volume 5 (2005) no. 2, pp. 415-441 | DOI | MR | Zbl

[24] Masa-Hiko Saito; Szilárd Szabó On apparent singularities and canonical coordinates for moduli spaces of connections (in preparation)

[25] Hidetaka Sakai Rational surfaces associated with affine root systems and geometry of the Painlevé equations, Commun. Math. Phys., Volume 220 (2001) no. 1, pp. 165-229 | DOI | MR | Zbl

[26] Hidetaka Sakai Problem: discrete Painlevé equations and their Lax forms, RIMS Kôkyûroku Bessatsu, Volume B2 (2007), pp. 195-208 | MR | Zbl

[27] Kôji Yokogawa Moduli of stable pairs, J. Math. Kyoto Univ., Volume 31 (1991) no. 1, pp. 311-327 | MR | Zbl

Cité par Sources :