[Sommes motiviques de Gauss et Jacobi]
We study the Gauss and Jacobi sums from a viewpoint of motives. We exhibit isomorphisms between Chow motives arising from the Artin–Schreier curve and the Fermat varieties over a finite field, that can be regarded as (and yield a new proof of) classically known relations among Gauss and Jacobi sums such as Davenport–Hasse’s multiplication formula. As a key step, we define motivic analogues of the Gauss and Jacobi sums as algebraic correspondences, and show that they represent the Frobenius endomorphisms of such motives. This generalizes Coleman’s result for curves. These results are applied to investigate the group of invertible Chow motives with coefficients in a cyclotomic field.
Nous étudions les sommes de Gauss et de Jacobi du point de vue des motifs. Nous démontrons des isomorphismes entre les motifs de Chow associés à la courbe d’Artin–Schreier et les variétés de Fermat sur un corps fini, qui peuvent être considérés comme (et fournissent une nouvelle preuve de) relations classiquement connues entre les sommes de Gauss et de Jacobi telles que la formule de multiplication de Davenport–Hasse. Comme étape clé, nous définissons des analogues motiviques des sommes de Gauss et de Jacobi comme des correspondances algébriques, et montrons qu’ils représentent les endomorphismes de Frobenius de tels motifs. Cela généralise le résultat de Coleman pour les courbes. Ces résultats sont appliqués à l’étude du groupe des motifs de Chow inversibles à coefficients dans un corps cyclotomique.
Accepté le :
Publié le :
Keywords: Gauss sums, Jacobi sums, Davenport–Hasse relation, Chow motives, Weil numbers
Noriyuki Otsubo  1 ; Takao Yamazaki  2
CC-BY 4.0
@article{AFST_2026_6_35_1_95_0,
author = {Noriyuki Otsubo and Takao Yamazaki},
title = {Motivic {Gauss} and {Jacobi} sums},
journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
pages = {95--135},
year = {2026},
publisher = {Universit\'e de Toulouse, Toulouse},
volume = {Ser. 6, 35},
number = {1},
doi = {10.5802/afst.1842},
language = {en},
url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1842/}
}
TY - JOUR AU - Noriyuki Otsubo AU - Takao Yamazaki TI - Motivic Gauss and Jacobi sums JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2026 SP - 95 EP - 135 VL - 35 IS - 1 PB - Université de Toulouse, Toulouse UR - https://afst.centre-mersenne.org/articles/10.5802/afst.1842/ DO - 10.5802/afst.1842 LA - en ID - AFST_2026_6_35_1_95_0 ER -
%0 Journal Article %A Noriyuki Otsubo %A Takao Yamazaki %T Motivic Gauss and Jacobi sums %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2026 %P 95-135 %V 35 %N 1 %I Université de Toulouse, Toulouse %U https://afst.centre-mersenne.org/articles/10.5802/afst.1842/ %R 10.5802/afst.1842 %G en %F AFST_2026_6_35_1_95_0
Noriyuki Otsubo; Takao Yamazaki. Motivic Gauss and Jacobi sums. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 35 (2026) no. 1, pp. 95-135. doi: 10.5802/afst.1842
[1] Algebraic -theory, W. A. Benjamin, Inc., 1968, xx+762 pages | Zbl | MR
[2] Height pairing between algebraic cycles, -theory, arithmetic and geometry (Moscow, 1984–1986) (Lecture Notes in Mathematics), Volume 1289, Springer, 1987, pp. 1-25 | DOI | MR | Zbl
[3] A DG guide to Voevodsky’s motives, Geom. Funct. Anal., Volume 17 (2008) no. 6, pp. 1709-1787 | Zbl | DOI | MR
[4] Gauss and Jacobi sums, Canadian Mathematical Society Series of Monographs and Advanced Texts, John Wiley & Sons, 1998, xii+583 pages (A Wiley-Interscience Publication) | Zbl | MR
[5] On the Frobenius endomorphisms of Fermat and Artin-Schreier curves, Proc. Am. Math. Soc., Volume 102 (1988) no. 3, pp. 463-466 | Zbl | DOI | MR
[6] Die Nullstellen der Kongruenzzetafunktionen in gewissen zyklischen Fällen, J. Reine Angew. Math., Volume 172 (1935), pp. 151-182 | DOI | MR | Zbl
[7] Cohomologie étale, Lecture Notes in Mathematics, 569, Springer, 1977, iv+312 pages (Séminaire de géométrie algébrique du Bois-Marie SGA ) | DOI | MR | Zbl
[8] Algebraic cycles and the Weil conjectures, Dix exposés sur la cohomologie des schémas (Advanced Studies in Pure Mathematics), Volume 3, North-Holland, 1968, pp. 359-386 | Zbl | MR
[9] Motives, Algebraic geometry, Oslo 1970 (Proc. Fifth Nordic Summer School in Math.), Wolters-Noordhoff Publishing, 1972, pp. 53-82 | Zbl | MR
[10] Zwei Sätze über Gleichungen mit ganzzahligen Coefficienten, J. Reine Angew. Math., Volume 53 (1857), pp. 173-175 | Zbl | DOI | MR
[11] Lecture notes on motivic cohomology, Clay Mathematics Monographs, 2, American Mathematical Society; Clay Mathematics Institute, 2006, xiv+216 pages | Zbl | MR
[12] Motives over finite fields, Motives (Seattle, WA, 1991) (Proceedings of Symposia in Pure Mathematics), Volume 55, Part 1, American Mathematical Society, 1994, pp. 401-459 | Zbl | DOI | MR
[13] Lectures on the theory of pure motives, University Lecture Series, 61, American Mathematical Society, 2013, x+149 pages | Zbl | DOI | MR
[14] Sign ambiguities of Jacobi sums, Duke Math. J., Volume 40 (1973), pp. 313-334 | Zbl | MR
[15] On the regulator of Fermat motives and generalized hypergeometric functions, J. Reine Angew. Math., Volume 660 (2011), pp. 27-82 | Zbl | DOI | MR
[16] Hypergeometric functions over finite fields, Ramanujan J., Volume 63 (2024) no. 1, pp. 55-104 | Zbl | DOI | MR
[17] Classical motives, Motives (Seattle, WA, 1991) (Proceedings of Symposia in Pure Mathematics), Volume 55, Part 1, American Mathematical Society, 1994, pp. 163-187 | Zbl | DOI | MR
[18] On Fermat varieties, Tôhoku Math. J. (2), Volume 31 (1979) no. 1, pp. 97-115 | Zbl | DOI | MR
[19] On the Stickelberger ideal and the circular units of a cyclotomic field, Ann. Math. (2), Volume 108 (1978) no. 1, pp. 107-134 | Zbl | DOI | MR
[20] Groupes de Chow et -théorie de variétés sur un corps fini, Math. Ann., Volume 268 (1984) no. 3, pp. 317-345 | DOI | MR | Zbl
[21] Multiplication formula for hypergeometric functions, Algebraic cycles and related topics (Kitasakado, 1994), World Scientific, 1995, pp. 83-91 | Zbl | MR
[22] Triangulated categories of motives over a field, Cycles, transfers, and motivic homology theories (Annals of Mathematics Studies), Volume 143, Princeton University Press, 2000, pp. 188-238 | Zbl | MR
[23] Numbers of solutions of equations in finite fields, Bull. Am. Math. Soc., Volume 55 (1949), pp. 497-508 | Zbl | DOI | MR
[24] On a conjecture of Hasse concerning multiplicative relations of Gaussian sums, J. Comb. Theory, Volume 1 (1966), pp. 476-489 | DOI | Zbl | MR
Cité par Sources :