[Classification des fibrations du tore sur la 2-sphère à stabilisation des sommes de fibres près]
We study torus fibrations over the $2$-sphere and Hurwitz equivalence of their monodromies. We show that, if two torus fibrations over $S^2$ have the same type of singularities, then their global monodromies are Hurwitz equivalent after performing direct sums with a certain torus Lefschetz fibration. The additional torus Lefschetz fibration is universal when the type of singularities is “simple”.
Nous étudions les fibrations du tore sur la $2$-sphère et l’équivalence de Hurwitz de leurs monodromies. Nous démontrons que, si deux fibrations du tore sur $S^2$ ont le même type de singularités, alors leurs monodromies globales sont équivalentes au sens de Hurwitz après avoir effectué des sommes directes avec une certaine fibration de Lefschetz du tore. Cette fibration de Lefschetz du tore supplémentaire est universelle lorsque le type de singularités est « simple ».
Accepté le :
Publié le :
Keywords: 4-manifold, fibration, monodromy, mapping class group
Mots-clés : variété de dimension 4, fibration, monodromie, groupe de difféotopie
Yibo Zhang  1
CC-BY 4.0
@article{AFST_2026_6_35_1_137_0,
author = {Yibo Zhang},
title = {Classification of torus fibrations over $S^2$ up to fibre sum stabilisation},
journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
pages = {137--222},
year = {2026},
publisher = {Universit\'e de Toulouse, Toulouse},
volume = {Ser. 6, 35},
number = {1},
doi = {10.5802/afst.1843},
language = {en},
url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1843/}
}
TY - JOUR AU - Yibo Zhang TI - Classification of torus fibrations over $S^2$ up to fibre sum stabilisation JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2026 SP - 137 EP - 222 VL - 35 IS - 1 PB - Université de Toulouse, Toulouse UR - https://afst.centre-mersenne.org/articles/10.5802/afst.1843/ DO - 10.5802/afst.1843 LA - en ID - AFST_2026_6_35_1_137_0 ER -
%0 Journal Article %A Yibo Zhang %T Classification of torus fibrations over $S^2$ up to fibre sum stabilisation %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2026 %P 137-222 %V 35 %N 1 %I Université de Toulouse, Toulouse %U https://afst.centre-mersenne.org/articles/10.5802/afst.1843/ %R 10.5802/afst.1843 %G en %F AFST_2026_6_35_1_137_0
Yibo Zhang. Classification of torus fibrations over $S^2$ up to fibre sum stabilisation. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 35 (2026) no. 1, pp. 137-222. doi: 10.5802/afst.1843
[1] A stable classification of Lefschetz fibrations, Geom. Topol., Volume 9 (2005), pp. 203-217 | MR | DOI | Zbl
[2] Mapping class group factorizations and symplectic 4-manifolds: some open problems, Problems on mapping class groups and related topics, American Mathematical Society, 2006, pp. 123-132 | DOI | Zbl
[3] Factorizations in and simple examples of inequivalent Stein fillings, J. Symplectic Geom., Volume 13 (2015) no. 2, pp. 261-277 | MR | DOI | Zbl
[4] Zur Geometrie der Funktionen zweier komplexer Veränderlicher. II: Das Verhalten der Funktionen in der Umgebung ihrer Verzweigungsstellen. III: Klassifikation der Singularitäten algebroider Kurven. IV: Die Verzweigungsgruppen., Abh. Math. Semin. Univ. Hamb., Volume 6 (1928), pp. 1-55 | Zbl | MR | DOI
[5] Knots., De Gruyter Studies in Mathematics, 5, Walter de Gruyter, 2003 | MR | Zbl
[6] The irreducible components of the moduli space of dihedral covers of algebraic curves, Groups Geom. Dyn., Volume 9 (2015) no. 4, pp. 1185-1229 | MR | DOI | Zbl
[7] Genus stabilization for the components of moduli spaces of curves with symmetries, Algebr. Geom., Volume 3 (2016) no. 1, pp. 23-49 | MR | DOI | Zbl
[8] Non-trivial polynomial isolated singularities, Indag. Math., Volume 78 (1975), pp. 149-154 | DOI | MR | Zbl
[9] Differentiable maps with O-dimensional critical set. I, Pac. J. Math., Volume 41 (1972), pp. 615-630 | MR | DOI | Zbl
[10] Differentiable maps with O-dimensional critical set. II, Indiana Univ. Math. J., Volume 24 (1974), pp. 17-28 | MR | DOI | Zbl
[11] Global classification of isolated singularities in dimensions (4,3) and (8,5), Ann. Sc. Norm. Super. Pisa, Cl. Sci. (5), Volume 10 (2011) no. 4, pp. 819-861 | Numdam | MR | DOI | Zbl
[12] Singular fibrations over surfaces, Essays in geometry. Dedicated to Norbert A’Campo, European Mathematical Society, 2023, pp. 515-556 | DOI | Zbl
[13] Profinite completions of Burnside-type quotients of surface groups, Commun. Math. Phys., Volume 360 (2018) no. 3, pp. 1061-1082 | MR | DOI | Zbl
[14] Braided surfaces and their characteristic maps, New York J. Math., Volume 29 (2023), pp. 580-612 nyjm.albany.edu/j/2023/29-24.html | MR | Zbl
[15] 4-manifolds and Kirby calculus, Graduate Studies in Mathematics, 20, American Mathematical Society, 1999 | MR | Zbl
[16] Geometry of continued fractions, Algorithms and Computation in Mathematics, 26, Springer, 2013 | MR | DOI | Zbl
[17] On the deformation types of regular elliptic surfaces, Complex analysis and algebraic geometry. A collection of papers dedicated to K. Kodaira, Cambridge University Press, 1977, pp. 107-111 | Zbl
[18] On the handlebody decomposition associated to a Lefschetz fibration, Pac. J. Math., Volume 89 (1980), pp. 89-104 | MR | DOI | Zbl
[19] Topological type of isolated critical points, Ann. Math. (2), Volume 107 (1978), pp. 385-397 | DOI | Zbl
[20] Topology of isolated critical points of functions on singular spaces, Stratifications, singularities and differential equations. II: Stratifications and topology of singular spaces. Proceedings of the meeting on stratifications and singularities, Luminy, France, and the meeting on singularities, Manoa, Honolulu, HI, USA 1990, Hermann, 1997, pp. 63-72 | Zbl
[21] On the structure of compact complex analytic surfaces. I, Am. J. Math., Volume 86 (1964), pp. 751-798 | DOI | Zbl
[22] On the structure of compact complex analytic surfaces. II, III, Am. J. Math., Volume 88 (1966), pp. 682-721 | DOI | Zbl
[23] A note on polynomial isolated singularities, Indag. Math., Volume 74 (1971), pp. 418-421 | DOI | MR | Zbl
[24] Dynamics and actions on group presentations and representations., Geometry, rigidity, and group actions. Selected papers based on the presentations at the conference in honor of the 60th birthday of Robert J. Zimmer, Chicago, IL, USA, September 2007, University of Chicago Press, 2011, pp. 609-643 | Zbl
[25] Torus fibrations over the 2-sphere with the simplest singular fibers, J. Math. Soc. Japan, Volume 37 (1985), pp. 605-636 | MR | DOI | Zbl
[26] The basic theory of elliptic surfaces. Notes of lectures, ETS Editrice, 1989 | MR | Zbl
[27] Complex surfaces and connected sums of complex projective planes, Lecture Notes in Mathematics, 603, Springer, 1977 | DOI | MR | Zbl
[28] Conjugacy classes of (answer), MathOverflow, https://mathoverflow.net/q/236162
[29] On braid monodromy monoid (2004) https://www.msri.org/workshops/254/schedules/25013 (Talk at MSRI)
[30] Le nœud ”huit” est algébrique réel, Invent. Math., Volume 65 (1982), pp. 441-451 | MR | DOI | Zbl
[31] Schur-type invariants of branched -covers of surfaces, Topological phases of matter and quantum computation. AMS special session, Bowdoin College, Brunswick, ME, USA, September 24–25, 2016, American Mathematical Society, 2020, pp. 173-197 | DOI | Zbl
[32] The geometry of Markoff numbers, Math. Intell., Volume 7 (1985) no. 3, pp. 20-29 | MR | DOI | Zbl
[33] An elementary approach to the mapping class group of a surface, Geom. Topol., Volume 3 (1999), pp. 405-466 | MR | DOI | Zbl
Cité par Sources :