logo AFST
Stochastic partial differential equations: a rough paths view on weak solutions via Feynman–Kac
Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 26 (2017) no. 4, pp. 911-947.

We discuss regular and weak solutions to rough partial differential equations (RPDEs), thereby providing a (rough path-)wise view on important classes of SPDEs. In contrast to many previous works on RPDEs, our definition gives honest meaning to RPDEs as integral equations, based on which we are able to obtain existence, uniqueness and stability results. The case of weak “rough” forward equations, may be seen as robustification of the (measure-valued) Zakai equation in the rough path sense. Feynman–Kac representation for RPDEs, in formal analogy to similar classical results in SPDE theory, play an important role.

Nous discutons des solutions régulières et faibles d’équations aux dérivées partielles rugueuses (EDPR), fournissant ainsi un point de vue « chemins rugueux » sur des classes importantes d’ EDPS. Contrairement à de nombreux travaux antérieurs sur le sujet, notre définition donne un sens honnête aux EDPR en tant qu’équations intégrales, sur la base duquel nous sommes en mesure d’obtenir l’existence, l’unicité et la stabilité des résultats. Le cas d’équations forward faibles « rugueuses » peut être vu comme une robustification de l’équation de Zakai à valeurs mesure, au sens des chemins rugueux. Des représentations de type Feynman–Kac pour EDPR, par analogie formelle avec les résultats classiques similaires dans la théorie des EDPS, jouent un rôle important.

Published online:
DOI: 10.5802/afst.1556
Classification: 60H15
Keywords: stochastic partial differential equations, Zakai equation, Feynman–Kac formula, rough partial differential equations, rough paths
Joscha Diehl 1; Peter K. Friz 2; Wilhelm Stannat 3

1 University of California San Diego, University of California San Diego, Dept of Mathematics - MC 0112, 9500 Gilman Drive La Jolla, CA 92093, USA
2 TU Berlin, Institut für Mathematik, MA 7-2, Strasse des 17. Juni 136, 10623 Berlin, Germany ifriz@math.tu-berlin.deWeierstrass-Institut für Angewandte Analysis und Stochastik, Mohrenstrasse 39, 10117 Berlin, Germany
3 TU Berlin, Institut für Mathematik, MA 7-2, Strasse des 17. Juni 136, 10623 Berlin, Germany
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{AFST_2017_6_26_4_911_0,
     author = {Joscha Diehl and Peter K. Friz and Wilhelm Stannat},
     title = {Stochastic partial differential equations: a rough paths view on weak solutions via {Feynman{\textendash}Kac}},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     pages = {911--947},
     publisher = {Universit\'e Paul Sabatier, Toulouse},
     volume = {Ser. 6, 26},
     number = {4},
     year = {2017},
     doi = {10.5802/afst.1556},
     language = {en},
     url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1556/}
}
TY  - JOUR
TI  - Stochastic partial differential equations: a rough paths view on weak solutions via Feynman–Kac
JO  - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY  - 2017
DA  - 2017///
SP  - 911
EP  - 947
VL  - Ser. 6, 26
IS  - 4
PB  - Université Paul Sabatier, Toulouse
UR  - https://afst.centre-mersenne.org/articles/10.5802/afst.1556/
UR  - https://doi.org/10.5802/afst.1556
DO  - 10.5802/afst.1556
LA  - en
ID  - AFST_2017_6_26_4_911_0
ER  - 
%0 Journal Article
%T Stochastic partial differential equations: a rough paths view on weak solutions via Feynman–Kac
%J Annales de la Faculté des sciences de Toulouse : Mathématiques
%D 2017
%P 911-947
%V Ser. 6, 26
%N 4
%I Université Paul Sabatier, Toulouse
%U https://doi.org/10.5802/afst.1556
%R 10.5802/afst.1556
%G en
%F AFST_2017_6_26_4_911_0
Joscha Diehl; Peter K. Friz; Wilhelm Stannat. Stochastic partial differential equations: a rough paths view on weak solutions via Feynman–Kac. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 26 (2017) no. 4, pp. 911-947. doi : 10.5802/afst.1556. https://afst.centre-mersenne.org/articles/10.5802/afst.1556/

[1] Alan Bain; Dan Crisan Fundamentals of stochastic filtering, Stochastic Modelling and Applied Probability, 60, Springer, 2009, xiii+390 pages | Zbl

[2] Vladimir I. Bogachev Measure theory. Vol. II, Springer, 2007, xiii+575 pages | Zbl

[3] Rémi Cantellier Perturbations irrégulières et systèmes différentiels rugueux, Université Paris-Dauphine, Paris (France) (2014) (Ph. D. Thesis)

[4] Michael Caruana; Peter K. Friz Partial differential equations driven by rough paths, J. Differ. Equations, Volume 247 (2009) no. 1, pp. 140-173 | DOI | Zbl

[5] Michael Caruana; Peter K. Friz; Harald Oberhauser A (rough) pathwise approach to a class of non-linear stochastic partial differential equations, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 28 (2011) no. 1, pp. 27-46 | DOI | Zbl

[6] Thomas Cass; Christian Litterer; Terry Lyons Integrability estimates for Gaussian rough differential equations, Ann. Probab., Volume 41 (2013) no. 4, pp. 3026-3050 | DOI | Zbl

[7] Dan Crisan; Joscha Diehl; Peter K. Friz; Harald Oberhauser Robust filtering: correlated noise and multidimensional observation, Ann. Appl. Probab., Volume 23 (2013) no. 5, pp. 2139-2160 | DOI | Zbl

[8] Alexander M. Davie Differential equations driven by rough paths: an approach via discrete approximation, AMRX, Appl. Math. Res. Express, Volume 2007 (2008) (Article ID abm009, 40 pp.) | Zbl

[9] Joscha Diehl; Peter K. Friz Backward stochastic differential equations with rough drivers, Ann. Probab., Volume 40 (2012) no. 4, pp. 175-1758 | DOI | Zbl

[10] Joscha Diehl; Harald Oberhauser; Sebastian Riedel A Lévy area between Brownian motion and rough paths with applications to robust nonlinear filtering and rough partial differential equations, Stochastic Processes Appl., Volume 125 (2015) no. 1, pp. 161-181 | DOI | Zbl

[11] F.G. Friedlander; M. S. Joshi Introduction to the Theory of Distributions, Cambridge University Press, 1998

[12] Peter K. Friz; Martin Hairer A Course on Rough Paths: With an Introduction to Regularity Structures, Universitext, Springer, 2014, xiv+251 pages | Zbl

[13] Peter K. Friz; Harald Oberhauser Rough path limits of the Wong-Zakai type with a modified drift term, J. Funct. Anal., Volume 256 (2009) no. 10, pp. 3236-3256 | DOI | Zbl

[14] Peter K. Friz; Harald Oberhauser Rough path stability of (semi-)linear SPDEs, Probab. Theory Relat. Fields, Volume 158 (2014) no. 1-2, pp. 401-434 | DOI | Zbl

[15] Peter K. Friz; Sebastian Riedel Integrability of (non-)linear rough differential equations and integrals, Stochastic Anal. Appl., Volume 31 (2013) no. 2, pp. 336-358 | DOI | Zbl

[16] Peter K. Friz; Nicolas B. Victoir Multidimensional stochastic processes as rough paths: theory and applications, Cambridge Studies in Advanced Mathematics, 120, Cambridge University Press, 2010, xiv+656 pages | Zbl

[17] István Gyöngy On the approximation of stochastic partial differential equations. I, Stochastics, Volume 25 (1988) no. 2, pp. 59-85 | DOI | Zbl

[18] István Gyöngy On the approximation of stochastic partial differential equations. II, Stochastics, Volume 26 (1989) no. 3, pp. 129-164 | Zbl

[19] Nicolaĭ Vladimirovich Krylov Introduction to the theory of diffusion processes, Translations of Mathematical Monographs, 142, American Mathematical Society, 1995, xi+271 pages | Zbl

[20] Nicolaĭ Vladimirovich Krylov Lectures on elliptic and parabolic equations in Hölder spaces, Graduate Studies in Mathematics, 12, American Mathematical Society, 1996, xii+164 pages | Zbl

[21] Nicolaĭ Vladimirovich Krylov An analytic approach to SPDEs, Stochastic partial differential equations: six perspectives. (Mathematical Surveys and Monographs), Volume 64, American Mathematical Society, 1999, pp. 185-242 | Zbl

[22] Hiroshi Kunita Stochastic partial differential equations connected with non-linear filtering, Nonlinear filtering and stochastic control (Cortona, Italy, July 1-10, 1981) (Lecture Notes in Mathematics), Volume 972, Springer, 1982, pp. 100-169 | Zbl

[23] Pierre-Louis Lions; Panagiotis E. Souganidis Fully nonlinear stochastic partial differential equations, C. R. Acad. Sci., Paris, Sér. I, Math., Volume 327 (1998) no. 8, pp. 735-741 | DOI | Zbl

[24] Etienne Pardoux Stochastic partial differential equations and filtering of diffusion processes, Stochastics, Volume 3 (1979), pp. 127-167 | DOI | Zbl

[25] Boris L. Rozovskii Stochastic evolution systems, Springer, 1990 | Zbl

Cited by Sources: