Remarks on uniqueness results of the first eigenvalue of the p-laplacian
Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 5, Volume 9 (1988) no. 1, pp. 65-75.
@article{AFST_1988_5_9_1_65_0,
     author = {G. Barles},
     title = {Remarks on uniqueness results of the first eigenvalue of the $p$-laplacian},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     pages = {65--75},
     publisher = {Universit\'e Paul Sabatier},
     address = {Toulouse},
     volume = {Ser. 5, 9},
     number = {1},
     year = {1988},
     zbl = {0621.35068},
     mrnumber = {971814},
     language = {en},
     url = {https://afst.centre-mersenne.org/item/AFST_1988_5_9_1_65_0/}
}
TY  - JOUR
AU  - G. Barles
TI  - Remarks on uniqueness results of the first eigenvalue of the $p$-laplacian
JO  - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY  - 1988
SP  - 65
EP  - 75
VL  - 9
IS  - 1
PB  - Université Paul Sabatier
PP  - Toulouse
UR  - https://afst.centre-mersenne.org/item/AFST_1988_5_9_1_65_0/
LA  - en
ID  - AFST_1988_5_9_1_65_0
ER  - 
%0 Journal Article
%A G. Barles
%T Remarks on uniqueness results of the first eigenvalue of the $p$-laplacian
%J Annales de la Faculté des sciences de Toulouse : Mathématiques
%D 1988
%P 65-75
%V 9
%N 1
%I Université Paul Sabatier
%C Toulouse
%U https://afst.centre-mersenne.org/item/AFST_1988_5_9_1_65_0/
%G en
%F AFST_1988_5_9_1_65_0
G. Barles. Remarks on uniqueness results of the first eigenvalue of the $p$-laplacian. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 5, Volume 9 (1988) no. 1, pp. 65-75. https://afst.centre-mersenne.org/item/AFST_1988_5_9_1_65_0/

[1] Di Benedetto (E.).- C1+α local regularity of weak solutions of degenerate elliptic Equations. Non linear Anal. TMA, Vol 7, N°8, 1983. | MR | Zbl

[2] Di Benedetto (E.) and Trudinger (N.S.).- Harnack inequalities for quasi-minima of variational integrals . Anna. Inst. H. Poincaré. Anal. Non Lin., Vol 1, N°4, 1984. | Numdam | MR | Zbl

[3] Di Giorgi (E.). - Sulla differenziabilita e l'analitica delle estremali degli integrali multipli regolari. Mem. Acad. Sci. Torino. Cl. Sci. Fis. Mat. Nat. (3) t.3, 1957. | MR | Zbl

[4] De Thelin (F.).- Sur l'espace propre associé à la première valeur propre du pseudo Laplacien dans la boule unité. CRAS, Paris, série 198.

[5] Garcia Azorero (J.P.) and Peral Alonso (I.) .- Existence and nonuniqueness for the p-Laplacian : non linear eigenvalues. Preprint.

[6] Giaquinta (M.) and Giusti (E.).- Quasi minima. Annal. Inst. H. Poincaré. Anal. Non Lin. Vol. 1, N°2, 1984. | Numdam | MR | Zbl

[7] Gilbarg (D.) and Trudinger (N.S.). - Elliptic partial differential equations of second order. 2nd édition . Ed. Springer-Verlag (New-York), 1983. | MR | Zbl

[8] Jensen (R.). - Boundary regularity for variational inequalities. Indiana Univ. Math. J. 29 1980. | MR | Zbl

[9] Ladyzenskaya (O.A.) and Uraltseva (N.N.). - Linear and quasi linear elliptic equations. Academic Press (New-York), 1968. | MR | Zbl

[10] Laetsch (Th.). - A uniqueness theorem for elliptic quasivariational inequalities. J. Funct. Anal. 12, 1979. | MR

[11] Lions (P.L.).- Two remarks on Monge Ampère Equations. Annali di Matematica pura ed applicata (IV). vol. CXLII. | Zbl

[12] Lions (P.L.). - Bifurcation and optimal stochastic control. Non linear Anal. TMA, 7, 1983. | MR

[13] Otani (M.). - Proceed, Fac. Sci. Tokai Univ. 19, 1984. | MR

[14] Tolksdorf (P.).- Regularity for a more general class of quasilinear elliptic equations. J. Dif. Equ. 51, 1984. | MR | Zbl

[15] Tolksdorf (P.) .- On the Dirichlet problem for quasilinear elliptic equations with conical boundary points.

[16] Uhlenbeck (K.).- Regularity for a class of non linear elliptic systems. Acta. Math. 138, 1977. | MR | Zbl

[17] Diaz (J.I.) and Saa (J.E.).- Uniqueness of nonnegative solutions for elliptic nonlinear diffusion equations with a general perturbation term. Proceedings the VIII CEDYA, Santander, 1985.

[18] Diaz (J.I.) and Saa (J.E.).- Uniqueness of nonnegative solutions for second order quasilinear equations with a possible source term. (To appear).