Porosity and continuous, nowhere differentiable functions
Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 2 (1993) no. 1, pp. 5-14.
@article{AFST_1993_6_2_1_5_0,
     author = {Valeriu Anisiu},
     title = {Porosity and continuous, nowhere differentiable functions},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     pages = {5--14},
     publisher = {Universit\'e Paul Sabatier},
     address = {Toulouse},
     volume = {Ser. 6, 2},
     number = {1},
     year = {1993},
     zbl = {0781.26004},
     mrnumber = {1230703},
     language = {en},
     url = {https://afst.centre-mersenne.org/item/AFST_1993_6_2_1_5_0/}
}
TY  - JOUR
AU  - Valeriu Anisiu
TI  - Porosity and continuous, nowhere differentiable functions
JO  - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY  - 1993
SP  - 5
EP  - 14
VL  - 2
IS  - 1
PB  - Université Paul Sabatier
PP  - Toulouse
UR  - https://afst.centre-mersenne.org/item/AFST_1993_6_2_1_5_0/
LA  - en
ID  - AFST_1993_6_2_1_5_0
ER  - 
%0 Journal Article
%A Valeriu Anisiu
%T Porosity and continuous, nowhere differentiable functions
%J Annales de la Faculté des sciences de Toulouse : Mathématiques
%D 1993
%P 5-14
%V 2
%N 1
%I Université Paul Sabatier
%C Toulouse
%U https://afst.centre-mersenne.org/item/AFST_1993_6_2_1_5_0/
%G en
%F AFST_1993_6_2_1_5_0
Valeriu Anisiu. Porosity and continuous, nowhere differentiable functions. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 2 (1993) no. 1, pp. 5-14. https://afst.centre-mersenne.org/item/AFST_1993_6_2_1_5_0/

[1] Banach (S.) .- Uber die Baire'sche Kategorie gewisser Funktionenmengen, Studia. Math. 3 (1931), pp. 174-179. | JFM | Zbl

[2] Evans (M.J.). - Approximate smoothness of continuous functions, Colloq. Math. 54 (1987), 2, pp. 307-313. | MR | Zbl

[3] Hata (M.) . - Singularities of the Weierstrass type functions, J. Analyse Math. 51 (1988), pp. 62-90. | MR | Zbl

[4] Hata (M.) . - On continuous functions with no unilateral derivatives, Ann. Inst. Fourier Grenoble 38 (1988), 2, pp. 43-62. | Numdam | MR | Zbl

[5] Maly (J.). - Where the continuous functions without unilateral derivatives are typical, Trans. Amer. Math. Soc. 283 (1984), 1, pp. 169-175. | MR | Zbl

[6] Mazurkiewicz (S.). - Sur les fonctions non dérivables, Studia Math. 3 (1931), pp. 92-94. | JFM | Zbl

[7] Preiss (D.) and Zajicek (L.). - Fréchet differentiation of convex functions in a Banach space with a separable dual, Proc. Amer. Math. Soc. 91 (1984), 2, pp. 202-204. | MR | Zbl

[8] Saks (S.) . - On the functions of Besicovitch in the space of continuous functions, Fund. Math. 19 ( 1932), pp. 211-219. | JFM | Zbl

[9] Saks (S.). - Theory of the integral, Warsaw, 1937. | JFM

[10] Thomson (B. S.). - Real functions, Lecture Notes in Math. 1170, Springer 1985. | MR | Zbl

[11] Zajicek (L.) . - Sets of σ-porosity and sets of σ-porosity (q), Casopis Pest. Mat. 101 (1976), pp. 350-359. | EuDML | MR | Zbl

[12] Zajicek (L.). - Porosity and σ-porosity, Real Anal. Exchange 13 (1987-88), pp. 314-350. | MR | Zbl

[13] Zamifirescu (T.). - How many sets are porous, Proc. Amer. Math. Soc. 100 (1987), 2, pp. 383-387. | MR | Zbl