@article{AFST_1993_6_2_1_5_0, author = {Valeriu Anisiu}, title = {Porosity and continuous, nowhere differentiable functions}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {5--14}, publisher = {Universit\'e Paul Sabatier}, address = {Toulouse}, volume = {Ser. 6, 2}, number = {1}, year = {1993}, zbl = {0781.26004}, mrnumber = {1230703}, language = {en}, url = {https://afst.centre-mersenne.org/item/AFST_1993_6_2_1_5_0/} }
TY - JOUR AU - Valeriu Anisiu TI - Porosity and continuous, nowhere differentiable functions JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 1993 SP - 5 EP - 14 VL - 2 IS - 1 PB - Université Paul Sabatier PP - Toulouse UR - https://afst.centre-mersenne.org/item/AFST_1993_6_2_1_5_0/ LA - en ID - AFST_1993_6_2_1_5_0 ER -
%0 Journal Article %A Valeriu Anisiu %T Porosity and continuous, nowhere differentiable functions %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 1993 %P 5-14 %V 2 %N 1 %I Université Paul Sabatier %C Toulouse %U https://afst.centre-mersenne.org/item/AFST_1993_6_2_1_5_0/ %G en %F AFST_1993_6_2_1_5_0
Valeriu Anisiu. Porosity and continuous, nowhere differentiable functions. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 2 (1993) no. 1, pp. 5-14. https://afst.centre-mersenne.org/item/AFST_1993_6_2_1_5_0/
[1] Uber die Baire'sche Kategorie gewisser Funktionenmengen, Studia. Math. 3 (1931), pp. 174-179. | JFM | Zbl
) .-[2] Approximate smoothness of continuous functions, Colloq. Math. 54 (1987), 2, pp. 307-313. | MR | Zbl
). -[3] Singularities of the Weierstrass type functions, J. Analyse Math. 51 (1988), pp. 62-90. | MR | Zbl
) . -[4] On continuous functions with no unilateral derivatives, Ann. Inst. Fourier Grenoble 38 (1988), 2, pp. 43-62. | Numdam | MR | Zbl
) . -[5] Where the continuous functions without unilateral derivatives are typical, Trans. Amer. Math. Soc. 283 (1984), 1, pp. 169-175. | MR | Zbl
). -[6] Sur les fonctions non dérivables, Studia Math. 3 (1931), pp. 92-94. | JFM | Zbl
). -[7] Fréchet differentiation of convex functions in a Banach space with a separable dual, Proc. Amer. Math. Soc. 91 (1984), 2, pp. 202-204. | MR | Zbl
) and ). -[8] On the functions of Besicovitch in the space of continuous functions, Fund. Math. 19 ( 1932), pp. 211-219. | JFM | Zbl
) . -[9] Theory of the integral, Warsaw, 1937. | JFM
). -[10] Real functions, Lecture Notes in Math. 1170, Springer 1985. | MR | Zbl
S.). -[11] Sets of σ-porosity and sets of σ-porosity (q), Casopis Pest. Mat. 101 (1976), pp. 350-359. | EuDML | MR | Zbl
) . -[12] Porosity and σ-porosity, Real Anal. Exchange 13 (1987-88), pp. 314-350. | MR | Zbl
). -[13] How many sets are porous, Proc. Amer. Math. Soc. 100 (1987), 2, pp. 383-387. | MR | Zbl
). -