@article{AFST_1995_6_4_4_763_0, author = {C\'elestin Clotaire Kokonendji}, title = {Sur les familles exponentielles naturelles r\'eelles de {grand-Babel}}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {763--800}, publisher = {Universit\'e Paul Sabatier}, address = {Toulouse}, volume = {6e s{\'e}rie, 4}, number = {4}, year = {1995}, zbl = {0872.62014}, mrnumber = {1623464}, language = {fr}, url = {https://afst.centre-mersenne.org/item/AFST_1995_6_4_4_763_0/} }
TY - JOUR AU - Célestin Clotaire Kokonendji TI - Sur les familles exponentielles naturelles réelles de grand-Babel JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 1995 SP - 763 EP - 800 VL - 4 IS - 4 PB - Université Paul Sabatier PP - Toulouse UR - https://afst.centre-mersenne.org/item/AFST_1995_6_4_4_763_0/ LA - fr ID - AFST_1995_6_4_4_763_0 ER -
%0 Journal Article %A Célestin Clotaire Kokonendji %T Sur les familles exponentielles naturelles réelles de grand-Babel %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 1995 %P 763-800 %V 4 %N 4 %I Université Paul Sabatier %C Toulouse %U https://afst.centre-mersenne.org/item/AFST_1995_6_4_4_763_0/ %G fr %F AFST_1995_6_4_4_763_0
Célestin Clotaire Kokonendji. Sur les familles exponentielles naturelles réelles de grand-Babel. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 4 (1995) no. 4, pp. 763-800. https://afst.centre-mersenne.org/item/AFST_1995_6_4_4_763_0/
[1] Variance functions with meromorphic means, Ann. of Proba. 19 (1991), pp. 1349-1366. | MR | Zbl
), ) et ) .-[2] Reproducibility and natural exponential families with power variance functions, Anna. Statist. 14 (1987), pp. 1507-1522. | MR | Zbl
) et ) .-[3] Sampling models with admit a given general exponential family as conjugate family of priors, Ann. Statist. (à paraître) (1994). | MR | Zbl
), ) et ) .-[4] Information and exponential families in statistical theory, Wiley, New-York (1978). | MR | Zbl
) .-[5] Hyperbolic distributions and distributions on hyperbolae, Scand. J. Statist. 5 (1978), pp. 151-157. | MR | Zbl
) .-[6] Conjugate priors for exponential families, Ann. Statist. 7 (1979), pp. 269-281. | MR | Zbl
) et ) .-[7] Infinitesimal calculus, Houghton Mifflin, Boston (1971). | MR
) .-[8] Hitting probabilities for spectrally positive Lévy processes, J. London Math. Soc. 44 (1991), pp. 566-576. | MR | Zbl
) .-[9] An introduction to probability theory and its applications, Vol. 2, Wiley, New-York (1966). | MR | Zbl
) . -[10] On the time spent above a level by a Brownian motion, Adv. Appl. Prob. 18 (1986), pp. 1017-1018. | MR | Zbl
) . -[11] Theory of probability, Oxford University Press (1948). | Zbl
) .-[12] Some properties of exponential dispersion models, Scand. J. Statist. 13 (1986), pp. 187-198. | MR | Zbl
) .-[13] Exponential dispersion models, J. Roy. Statist. Soc. Ser. B49 (1987), pp. 127-162. | MR | Zbl
) .-[14] The theory of exponential dispersion models and analysis of deviance. I.M.P.A. Rio de Janeiro (1992). | MR | Zbl
) .-[15] Sur une propriété des familles exponentielles naturelles de variance quadratique. Canadian Jour. Statist. 17 (1989), pp. 1-8. | MR | Zbl
), ) et ) .-[16] Caractérisation de fonctions variance de Seshadri des familles exponentielles sur IR, C.R. Acad. Sci. Paris. 314, série I (1992), pp. 1063-1068. | MR | Zbl
) .-[17] Exponential families with variance functions in √ΔP(√Δ) : Seshadri's class, Test 3, n° 2 (1994), pp. 99-148. | MR | Zbl
) .-[18] La méthode de Lindsay appliquée à la construction de familles exponentielles de fonctions variances de degré 4 en √m, C.R. Acad. Sci. Paris 314, série I (1992), pp. 305-308. | MR | Zbl
) et ) .-[19] The Lindsay transform of natural exponential families, Canadian Jour. Statist. 22, n° 2 (1994), pp. 259-272. | MR | Zbl
) et ) .-[20] La réciprocité des familles exponentielles naturelles sur IR, C.R. Acad. Sci. Paris, 303, série I (1986) pp. 61-64. | MR | Zbl
) . -[21] The classification of natural exponential families by their variances functions, Proceeding of the 48th session of the International Statistical Institute, Vol. LIV, Book 3 (1991).
) . -[22] Lectures on natural exponential families and their variance functions, I.M.P.A. Rio de Janeiro (1992). | MR | Zbl
) .-[23] Sur les fonctions-variances des familles exponentielles sur R, C.R. Acad. Sci. Paris 302, série I (1986), pp. 551-554. | MR | Zbl
) et ) .-[24] Natural real exponential families with cubic variance functions, Ann. Statist. 18 (1990), pp. 1-37. | MR | Zbl
) et ) .-[25] Classification des fonctions-variances cubiques des familles exponentielles sur IR, C.R. Acad. Sci. Paris 302, série I (1986), pp. 587-590. | MR | Zbl
) .-[26] Les lois de probabilité de Halphen, Revue de Statist. Appli. 4, n° 3 (1956), pp. 21-46. | Numdam
) . -[27] Natural exponential families with quadratic variance function, Ann. Statist. 10 (1982), pp. 65-80. | MR | Zbl
) .-[28] Ladder variables for a continuous time stochastic process, Z. Wahrscheinlichkeitstheorie verw. Geb. 16 (1970), pp. 157-164. | MR | Zbl
) . -