@article{AFST_1997_6_6_3_389_0,
author = {Ole E. Barndorff-Nielsen and Peter E. Jupp},
title = {Statistics, yokes and symplectic geometry},
journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
pages = {389--427},
publisher = {Universit\'e Paul Sabatier. Facult\'e des sciences},
address = {Toulouse},
volume = {Ser. 6, 6},
number = {3},
year = {1997},
zbl = {0908.62002},
mrnumber = {1610891},
language = {en},
url = {https://afst.centre-mersenne.org/item/AFST_1997_6_6_3_389_0/}
}
TY - JOUR AU - Ole E. Barndorff-Nielsen AU - Peter E. Jupp TI - Statistics, yokes and symplectic geometry JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 1997 SP - 389 EP - 427 VL - 6 IS - 3 PB - Université Paul Sabatier. Faculté des sciences PP - Toulouse UR - https://afst.centre-mersenne.org/item/AFST_1997_6_6_3_389_0/ LA - en ID - AFST_1997_6_6_3_389_0 ER -
%0 Journal Article %A Ole E. Barndorff-Nielsen %A Peter E. Jupp %T Statistics, yokes and symplectic geometry %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 1997 %P 389-427 %V 6 %N 3 %I Université Paul Sabatier. Faculté des sciences %C Toulouse %U https://afst.centre-mersenne.org/item/AFST_1997_6_6_3_389_0/ %G en %F AFST_1997_6_6_3_389_0
Ole E. Barndorff-Nielsen; Peter E. Jupp. Statistics, yokes and symplectic geometry. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 6 (1997) no. 3, pp. 389-427. https://afst.centre-mersenne.org/item/AFST_1997_6_6_3_389_0/
[1] ) and ) .- Foundations of Mechanics, 2nd ed., Addison-Wesley, Redwood City (1978). | Zbl | MR
[2] ) .- Differential-Geometrical Methods in Statistics, Lecture Notes in Statistics, Springer-Verlag, Heidelberg, 28 (1985). | Zbl | MR
[3] ) and ) .- Symplectic Geometry, In "Dynamical Systems IV: Symplectic Geometry and its Applications", Encyclopaedia of Mathematical Sciences (V. I. Arnol'd and S. P. Novikov, eds), Springer-Verlag, Berlin, 4 (1990), pp. 1-136. | Zbl | MR
[4] ) .- From Microphysics, to Macrophysics, Springer-Verlag, Berlin, 1 (1991). | Zbl | MR
[5] ) .- Hyperbolic distributions and distributions on hyperbolae, Scand. J. Statist. 5 (1978), pp. 151-157. | Zbl | MR
[6] ) .- Likelihood and observed geometries, Ann. Statist. 14 (1986), pp. 856-873. | Zbl | MR
[7] ) .- Differential geometry and statistics: some mathematical aspects, Indian J. Math. 29 (1987), pp. 335-350. | Zbl | MR
[8] ) .- Parametric Statistical Models and Likelihood, Lecture Notes in Statistics, Springer-Verlag, Heidelberg, 50 (1988). | Zbl | MR
[9] ) and ) .- Inference and Asymptotics, Chapman & Hall, London (1994). | Zbl
[10] ) and ) .- Differential geometry, profile likelihood, L-sufficiency and composite transformation models, Ann. Statist. 16 (1988), pp. 1009-1043. | Zbl | MR
[11] ) and ) .- Yokes and symplectic structures, J. Statist. Planning and Infce. 63 (1997), pp. 133-146. | Zbl | MR
[12] ) . - Yokes and tensors derived from yokes, Ann. Inst. Statist. Math. 43 (1991), pp. 95-113. | Zbl | MR
[13] ) .- Intégrales Exponentielles, Lecture Notes in Mathematics, Springer-Verlag, Berlin, 937 (1982). | Zbl | MR
[14] ), ) and ) .- Preferred point geometry and statistical manifolds, Ann. Statist. 21 (1993), 1197-1224. | Zbl | MR
[15] ), ) and ) .- Preferred point geometry and the local differential geometry of the Kullback-Leibler divergence, Ann. Statist. 22 (1994), pp. 1587-1602. | Zbl | MR
[16] ) .- Second order efficiency of minimum contrast estimation in a curved exponential family, Ann. Statist. 11 (1983), pp. 793-803. | Zbl | MR
[17] ) . - Die Fisher-Information und symplectische Strukturen, Math. Nachr. 153 (1991), pp. 273-296. | Zbl | MR
[18] ) .- On the hyperboloid distribution, Scand. J. Statist. 8 (1981), pp. 193-206. | Zbl | MR
[19] ) .- Lectures on Mechanics, London Mathematical Society Lecture Note Series, Cambridge University Press, Cambridge, 174 (1992). | Zbl | MR
[20] ) .- Examples of symplectic structures, Invent. Math. 89 (1987), pp. 13-36. | Zbl | MR
[21] ) and ) .- Differential Geometry and Statistics, Chapman & Hall, London (1993). | Zbl
[22] ) . - Completely integrable gradient systems on the manifolds of Gaussian and multinomial distributions, Japan J. Industr. Appl. Math. 10 (1993), pp. 179-189. | Zbl | MR
[23] ) .- Gradient systems associated with probability distributions, Japan J. Industr. Appl. Math. 11 (1994), pp. 21-30. | Zbl | MR
[24] ) .- On the density of minimum contrast estimators, Ann. Statist. 18 (1990), pp. 779-789. | Zbl | MR
[25] ) .- Symplectic manifolds and their Lagrangian submanifolds, Adv. Math. 6 (1971), pp. 329-346. | Zbl | MR
[26] ) . - Lectures on Symplectic Manifolds, AMS Regional Conference Series in Mathematics, American Mathematical Society, Providence, Rhode Island, 29 (1977). | Zbl | MR