@article{AFST_1997_6_6_3_389_0, author = {Ole E. Barndorff-Nielsen and Peter E. Jupp}, title = {Statistics, yokes and symplectic geometry}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {389--427}, publisher = {Universit\'e Paul Sabatier. Facult\'e des sciences}, address = {Toulouse}, volume = {Ser. 6, 6}, number = {3}, year = {1997}, zbl = {0908.62002}, mrnumber = {1610891}, language = {en}, url = {https://afst.centre-mersenne.org/item/AFST_1997_6_6_3_389_0/} }
TY - JOUR AU - Ole E. Barndorff-Nielsen AU - Peter E. Jupp TI - Statistics, yokes and symplectic geometry JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 1997 SP - 389 EP - 427 VL - 6 IS - 3 PB - Université Paul Sabatier. Faculté des sciences PP - Toulouse UR - https://afst.centre-mersenne.org/item/AFST_1997_6_6_3_389_0/ LA - en ID - AFST_1997_6_6_3_389_0 ER -
%0 Journal Article %A Ole E. Barndorff-Nielsen %A Peter E. Jupp %T Statistics, yokes and symplectic geometry %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 1997 %P 389-427 %V 6 %N 3 %I Université Paul Sabatier. Faculté des sciences %C Toulouse %U https://afst.centre-mersenne.org/item/AFST_1997_6_6_3_389_0/ %G en %F AFST_1997_6_6_3_389_0
Ole E. Barndorff-Nielsen; Peter E. Jupp. Statistics, yokes and symplectic geometry. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 6 (1997) no. 3, pp. 389-427. https://afst.centre-mersenne.org/item/AFST_1997_6_6_3_389_0/
[1] Foundations of Mechanics, 2nd ed., Addison-Wesley, Redwood City (1978). | MR | Zbl
) and ) .-[2] Differential-Geometrical Methods in Statistics, Lecture Notes in Statistics, Springer-Verlag, Heidelberg, 28 (1985). | MR | Zbl
) .-[3] Symplectic Geometry, In "Dynamical Systems IV: Symplectic Geometry and its Applications", Encyclopaedia of Mathematical Sciences (V. I. Arnol'd and S. P. Novikov, eds), Springer-Verlag, Berlin, 4 (1990), pp. 1-136. | MR | Zbl
) and ) .-[4] From Microphysics, to Macrophysics, Springer-Verlag, Berlin, 1 (1991). | MR | Zbl
) .-[5] Hyperbolic distributions and distributions on hyperbolae, Scand. J. Statist. 5 (1978), pp. 151-157. | MR | Zbl
) .-[6] Likelihood and observed geometries, Ann. Statist. 14 (1986), pp. 856-873. | MR | Zbl
) .-[7] Differential geometry and statistics: some mathematical aspects, Indian J. Math. 29 (1987), pp. 335-350. | MR | Zbl
) .-[8] Parametric Statistical Models and Likelihood, Lecture Notes in Statistics, Springer-Verlag, Heidelberg, 50 (1988). | MR | Zbl
) .-[9] Inference and Asymptotics, Chapman & Hall, London (1994). | Zbl
) and ) .-[10] Differential geometry, profile likelihood, L-sufficiency and composite transformation models, Ann. Statist. 16 (1988), pp. 1009-1043. | MR | Zbl
) and ) .-[11] Yokes and symplectic structures, J. Statist. Planning and Infce. 63 (1997), pp. 133-146. | MR | Zbl
) and ) .-[12] Yokes and tensors derived from yokes, Ann. Inst. Statist. Math. 43 (1991), pp. 95-113. | MR | Zbl
) . -[13] Intégrales Exponentielles, Lecture Notes in Mathematics, Springer-Verlag, Berlin, 937 (1982). | MR | Zbl
) .-[14] Preferred point geometry and statistical manifolds, Ann. Statist. 21 (1993), 1197-1224. | MR | Zbl
), ) and ) .-[15] Preferred point geometry and the local differential geometry of the Kullback-Leibler divergence, Ann. Statist. 22 (1994), pp. 1587-1602. | MR | Zbl
), ) and ) .-[16] Second order efficiency of minimum contrast estimation in a curved exponential family, Ann. Statist. 11 (1983), pp. 793-803. | MR | Zbl
) .-[17] Die Fisher-Information und symplectische Strukturen, Math. Nachr. 153 (1991), pp. 273-296. | MR | Zbl
) . -[18] On the hyperboloid distribution, Scand. J. Statist. 8 (1981), pp. 193-206. | MR | Zbl
) .-[19] Lectures on Mechanics, London Mathematical Society Lecture Note Series, Cambridge University Press, Cambridge, 174 (1992). | MR | Zbl
) .-[20] Examples of symplectic structures, Invent. Math. 89 (1987), pp. 13-36. | MR | Zbl
) .-[21] Differential Geometry and Statistics, Chapman & Hall, London (1993). | Zbl
) and ) .-[22] Completely integrable gradient systems on the manifolds of Gaussian and multinomial distributions, Japan J. Industr. Appl. Math. 10 (1993), pp. 179-189. | MR | Zbl
) . -[23] Gradient systems associated with probability distributions, Japan J. Industr. Appl. Math. 11 (1994), pp. 21-30. | MR | Zbl
) .-[24] On the density of minimum contrast estimators, Ann. Statist. 18 (1990), pp. 779-789. | MR | Zbl
) .-[25] Symplectic manifolds and their Lagrangian submanifolds, Adv. Math. 6 (1971), pp. 329-346. | MR | Zbl
) .-[26] Lectures on Symplectic Manifolds, AMS Regional Conference Series in Mathematics, American Mathematical Society, Providence, Rhode Island, 29 (1977). | MR | Zbl
) . -