logo AFST
On some properties of three-dimensional minimal sets in 4
Tien Duc Luu
Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 22 (2013) no. 3, p. 465-493

We prove in this paper the Hölder regularity of Almgren minimal sets of dimension 3 in 4 around a 𝕐-point and the existence of a point of particular type of a Mumford-Shah minimal set in 4 , which is very close to a 𝕋. This will give a local description of minimal sets of dimension 3 in 4 around a singular point and a property of Mumford-Shah minimal sets in 4 .

On prouve dans cet article la régularité Höldérienne pour les ensembles minimaux au sens d’Almgren de dimension 3 dans 4 autour d’un point de type 𝕐 et dans le cas d’un ensemble Mumford-Shah minimal dans 4 qui est très proche d’un 𝕋, l’existence d’un point avec une densité particulière. Cela donne une description locale des ensembles minimaux de dimension 3 dans 4 autour d’un point singulier et une propriété des ensembles Mumford-Shah minimaux dans 4 .

Published online : 2014-02-14
@article{AFST_2013_6_22_3_465_0,
     author = {Tien Duc Luu},
     title = {On some properties of three-dimensional minimal sets in ${\mathbb{R}}^4$},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     publisher = {Universit\'e Paul Sabatier, Toulouse},
     volume = {Ser. 6, 22},
     number = {3},
     year = {2013},
     pages = {465-493},
     mrnumber = {3113023},
     zbl = {1290.49093},
     language = {en},
     url = {https://afst.centre-mersenne.org/item/AFST_2013_6_22_3_465_0}
}
Luu, Tien Duc. On some properties of three-dimensional minimal sets in ${\mathbb{R}}^4$. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 22 (2013) no. 3, pp. 465-493. afst.centre-mersenne.org/item/AFST_2013_6_22_3_465_0/

[1] . Almgren (F. J.).— Some interior regularity theorems for minimal surfaces and an extension of Bernstein’s Theorem, Ann. of Math (2), Vol. 84, p. 277-292 (1966). | MR 200816 | Zbl 0146.11905

[2] . Allard (W. K.).— On the First Variation of a Varifold, Ann. of Math (2), Vol. 95, p. 417-491 (1972). | MR 307015 | Zbl 0252.49028

[3] . David (G.).— Hölder regularity of two-dimensional almost-minimal sets in n , Ann. Fac. Sci. Toulouse Math, (6), 18(1) p. 65-246 (2009). | Numdam | MR 2518104 | Zbl 1213.49051

[4] . David (G.).— C 1+α -regularity for two dimensional almost-minimal sets in n , Journal of Geometric Analysis, Vol 20, Number 4, p. 837-954. | MR 2683770 | Zbl 1225.49044

[5] . David (G.).— Singular sets of minimizers for the Mumford-Shah functional, Progress in Mathematics 233 (581p.), Birkhäuser (2005). | MR 2129693 | Zbl 1086.49030

[6] . David (G.), De Pauw (T.), and Toro (T.).— A generalization of Reifenberg’s theorem in 3 , Geom. Funct. Anal. Vol. 18, p. 1168-1235 (2008). | MR 2465688 | Zbl 1169.49040

[7] . David (G.) and Semmes (S.).— Uniform rectifiability and quasiminimizing sets of arbitrary codimension, Memoirs of the A.M.S. Number 687, Vol 144 (2000). | MR 1683164 | Zbl 0966.49024

[8] . Dugundji (J.).— Topology, Allyn and Bacon, Boston (1966). | MR 193606 | Zbl 0397.54003

[9] . Federer (H.).— Geometric measure theory, Grundlehren der Mathematishen Wissenschaften 153, Springer Verlag (1969). | MR 257325 | Zbl 0176.00801

[10] . Simons (J.).— Minimal varieties in riemannian manifolds, Ann. of Math, (2), Vol. 88, p. 62-105 (1968). | MR 233295 | Zbl 0181.49702

[11] . Taylor (J.).— The structure of singularities in soap-bubble-like and soap-film-like minimal surfaces, Ann. of Math. (2) 103, no. 3, p. 489-539 (1976). | MR 428181 | Zbl 0335.49032