logo AFST
Semi-contractions des espaces localement compacts et cas des variétés complexes
Jean-Jacques Loeb
Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 22 (2013) no. 3, p. 559-572

Inspired by papers of Beardon, we give results for fixed points and orbits of contractions and semi-contractions of locally compact connected spaces. More precise results are obtained for the case of complex Kobayashi hyperbolic manifolds.

En nous inspirant d’articles de Beardon, nous donnons des résultats concernant les points fixes et les orbites d’auto-applications contractantes et semi-contractantes des espaces connexes localement compacts. Des résultats plus précis sont obtenus dans le cas des variétés complexes Kobayashi hyperboliques.

Published online : 2014-02-14
@article{AFST_2013_6_22_3_559_0,
     author = {Jean-Jacques Loeb},
     title = {Semi-contractions des espaces localement compacts et cas des vari\'et\'es complexes},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     publisher = {Universit\'e Paul Sabatier, Toulouse},
     volume = {6e s{\'e}rie, 22},
     number = {3},
     year = {2013},
     pages = {559-572},
     mrnumber = {3113026},
     zbl = {1294.54030},
     language = {fr},
     url = {https://afst.centre-mersenne.org/item/AFST_2013_6_22_3_559_0}
}
Loeb, Jean-Jacques. Semi-contractions des espaces localement compacts et cas des variétés complexes. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 22 (2013) no. 3, pp. 559-572. afst.centre-mersenne.org/item/AFST_2013_6_22_3_559_0/

[1] Abate (M.).— Iteration theory of holomorphic maps on taut manifolds, Mediterranean Press, Rende (1989). | MR 1098711 | Zbl 0747.32002

[2] Beardon (A. F.).— Iteration of contractions and analytic maps, J. London Math. Soc. (2) 41, no. 1, p. 141-150 (1990). | MR 1063551 | Zbl 0662.30017

[3] Beardon (A. F.).— The dynamics of contractions, Ergodic Theory Dynam. Systems 17, no. 6, p. 1257-1266 (1997). | MR 1488316 | Zbl 0952.54023

[4] Bedford (E.).— On the automorphism group of a Stein manifold, Math. Ann. 226, no.2, p. 215-227 (1983). | MR 724738 | Zbl 0532.32014

[5] Calka (A.).— On conditions under which isometries have bounded orbits, Colloq. Math. 48, no. 2, 219-227 (1984). | MR 758530 | Zbl 0558.54021

[6] Edelstein (M.).— On fixed and periodic points under contractive mappings, J. London Math. Soc. 37, p. 4-79 (1962). | MR 133102 | Zbl 0113.16503

[7] Edelstein (M.).— On non-expansive mappings of Banach spaces, Proc. Cambridge Philos. Soc. 60, p. 439-447 (1964). | MR 164222 | Zbl 0196.44603

[8] Hofmann (K. H.), Morris (S. A.).— The sructures of compact groups, de Gruyter, Studies in mathematics, Berlin New-York (1998). | MR 1646190 | Zbl 0919.22001

[9] Karlsson (A.).— Nonexpanding maps, Busemann functions, and multiplicative ergodic theory, Rigidity in dynamics and geometry (Cambridge, 2000), p. 283-294, Springer, Berlin (2002). | MR 1919406 | Zbl 1035.37015

[10] Kobayashi (Sh.).— Hyperbolic complex spaces, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 318. Springer-Verlag, Berlin (1998). | MR 1635983 | Zbl 0917.32019

[11] Loeb (J.-J.).— On complex automorphisms and holomorphic equivalence of domains, Symmetries in complex analysis, p. 125-156, Contemp. Math., 468, Amer. Math. Soc., Providence, RI (2008). | MR 2484094 | Zbl 1156.32011

[12] Loeb (J.-J.), Vigué (J.-P.).— Sur les automorphismes analytiques des variétés hyperboliques, Bull. Sci. Math. 131, no. 5, p. 469-476 (2007). | MR 2337737 | Zbl 1198.32011

[13] Narashiman (R.).— Several complex variables, Chicago lectures in mathematics, The University of Chicago Press, Chicago and London (1971). | Zbl 0223.32001

[14] Vigué (J.-P.).— Sur les points fixes d’applications holomorphes, C.R. Acad. Sc. Paris I. Math., 303, p. 927-930 (1986). | Zbl 0607.32016