Nous considérons le processus de test de rapport de vraisemblance (LRT) relatif au test d’absence de QTL (un QTL désigne un gène à effet quantitatif sur un trait) sur un intervalle
We consider the likelihood ratio test (LRT) process related to the test of the absence of QTL (a QTL denotes a quantitative trait locus, i.e. a gene with quantitative effect on a trait) on the interval
@article{AFST_2014_6_23_4_755_0, author = {Charles-Elie Rabier}, title = {An asymptotic test for {Quantitative} {Trait} {Locus} detection in presence of missing genotypes}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {755--778}, publisher = {Universit\'e Paul Sabatier, Institut de Math\'ematiques}, address = {Toulouse}, volume = {Ser. 6, 23}, number = {4}, year = {2014}, doi = {10.5802/afst.1423}, mrnumber = {3270422}, zbl = {06374887}, language = {en}, url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1423/} }
TY - JOUR AU - Charles-Elie Rabier TI - An asymptotic test for Quantitative Trait Locus detection in presence of missing genotypes JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2014 SP - 755 EP - 778 VL - 23 IS - 4 PB - Université Paul Sabatier, Institut de Mathématiques PP - Toulouse UR - https://afst.centre-mersenne.org/articles/10.5802/afst.1423/ DO - 10.5802/afst.1423 LA - en ID - AFST_2014_6_23_4_755_0 ER -
%0 Journal Article %A Charles-Elie Rabier %T An asymptotic test for Quantitative Trait Locus detection in presence of missing genotypes %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2014 %P 755-778 %V 23 %N 4 %I Université Paul Sabatier, Institut de Mathématiques %C Toulouse %U https://afst.centre-mersenne.org/articles/10.5802/afst.1423/ %R 10.5802/afst.1423 %G en %F AFST_2014_6_23_4_755_0
Charles-Elie Rabier. An asymptotic test for Quantitative Trait Locus detection in presence of missing genotypes. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 23 (2014) no. 4, pp. 755-778. doi : 10.5802/afst.1423. https://afst.centre-mersenne.org/articles/10.5802/afst.1423/
[1] Arends (D.), Prins (P.), Broman (K.), Jansen (R.).— Tutorial Multiple QTL Mapping (MQM) Analysis, Technical Report (2010).
[2] Azaïs (J.M.), Cierco-Ayrolles (C.).— An asymptotic test for quantitative gene detection, Ann. Inst. Henri Poincaré (B), 38, 6, p. 1087-1092 (2002). | Numdam | MR | Zbl
[3] Azaïs (J.M.), Gassiat (E.), Mercadier (C.).— Asymptotic distribution and local power of the likelihood ratio test for mixtures, Bernoulli, 12(5), p. 775-799 (2006). | MR | Zbl
[4] Azaïs (J.M.), Gassiat (E.), Mercadier (C.).— The likelihood ratio test for general mixture models with possibly structural parameter, ESAIM, 13, p. 301-327 (2009). | Numdam | MR | Zbl
[5] Azaïs (J.M.), Wschebor (M.).— Level sets and extrema of random processes and fields, Wiley, New-York (2009). | MR | Zbl
[6] Azaïs (J.M.), Delmas (C.), Rabier (C-E.).— 2012. Likelihood Ratio Test process for QTL detection, Statistics, DOI:10.1080/02331888.2012.760093.
[7] Broman (K.).— Use of hidden Markov models for QTL mapping, Technical Report (2006).
[8] Chang (M. N.), Wu (R.), Wu (S. S.), Casella (G.).— Score statistics for mapping quantitative trait loci, Statistical Application in Genetics and Molecular Biology, 8(1), 16 (2009). | MR | Zbl
[9] Cierco (C.).— Asymptotic distribution of the maximum likelihood ratio test for gene detection, Statistics, 31, p. 261-285 (1998). | MR | Zbl
[10] Churchill (G.A.), Doerge (R.W.).— Empirical threshold values for quantitative trait mapping, Genetics, 138, p. 963-971 (1994).
[11] Darvasi (D.,) Soller (M.).— Selective genotyping for determination of linkage between a marker locus and a quantitative trait locus, Theoretical and Applied Genetics, 85, p. 353-359 (1992).
[12] Davies (R.B.).— Hypothesis testing when a nuisance parameter is present only under the alternative, Biometrika, 64, p. 247-254 (1977). | MR | Zbl
[13] Davies (R.B.).— Hypothesis testing when a nuisance parameter is present only under the alternative, Biometrika, 74, p. 33-43 (1987). | MR | Zbl
[14] Feingold (E.), Brown (P.O.), Siegmund (D.).— Gaussian models for genetic linkage analysis using complete high-resolution maps of idendity by descent, Am. J. Human. Genet., 53, p. 234-251 (1993).
[15] Gassiat (E.).— Likelihood ratio inequalities with applications to various mixtures, Ann. Inst. Henri Poincaré (B), 6, p. 897-906 (2002). | Numdam | MR | Zbl
[16] Genz (A.).— Numerical computation of multivariate normal probabilities, J. Comp. Graph. Stat., p. 141-149 (1992). | Zbl
[17] Haldane (J.B.S.).— The combination of linkage values and the calculation of distance between the loci of linked factors, Journal of Genetics, 8, p. 299-309 (1919).
[18] Hayes (B.).— QTL Mapping, MAS, and Genomic Selection, Short course organized by Iowa State University (2007).
[19] Lander (E.S.), Botstein (D.).— Mapping mendelian factors underlying quantitative traits using RFLP linkage maps, Genetics, 138, p. 235-240 (1989).
[20] Lebowitz (R.J.), Soller (M.), Beckmann (J.S.).— Trait-based analyses for the detection of linkage between marker loci and quantitative trait loci in crosses between inbred lines, Theoretical and Applied Genetics, 73, p. 556-562 (1987).
[21] Muranty (H.), Goffinet (B.).— Selective genotyping for location and estimation of the effect of the effect of a quantitative trait locus, Biometrics, 53, p. 629-643 (1997). | Zbl
[22] Rabier (C.-E.).— On stochastic processes for Quantitative Trait Locus mapping under selective genotyping, Statistics, DOI:10.1080/02331888.2013.858720 (2013).
[23] Rabier (C.-E.).— On statistical inference for selective genotyping, Journal of Statistical Planning and Inference, 147, p. 24-52 (2014). | MR | Zbl
[24] Rebaï (A.), Goffinet (B.), Mangin (B.).— Approximate thresholds of interval mapping tests for QTL detection, Genetics, 138, p. 235-240 (1994).
[25] Rebaï (A.), Goffinet (B.), Mangin (B.).— Comparing power of different methods for QTL detection, Biometrics, 51, p. 87-99 (1995). | Zbl
[26] Siegmund (D.).— Sequential analysis: tests and confidence intervals, Springer, New York (1985). | MR | Zbl
[27] Siegmund (D.), Yakir (B.).— The statistics of gene mapping, Springer, New York (2007). | MR | Zbl
[28] Van der Vaart (A.W.).— Asymptotic statistics, Cambridge Series in Statistical and Probabilistic Mathematics (1998). | MR | Zbl
[29] Wu (R.), MA (C.X.), Casella (G.).— Statistical Genetics of Quantitative Traits, Springer, New York (2007). | MR | Zbl
Cité par Sources :