logo AFST
Data assimilation for geophysical fluids
Didier Auroux
Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 26 (2017) no. 4, p. 767-793

Data assimilation is the domain at the interface between observations and models, which makes it possible to identify the global structure of a geophysical system from a set of discrete space-time data. After recalling state-of-the-art data assimilation methods, the variational 4D-VAR algorithm and the dual variational 4D-PSAS algorithm, and sequential Kalman filters, we will present the Back and Forth Nudging (BFN) algorithm, and the Diffusive Back and Forth Nudging (DBFN) algorithm, which is a natural extension of the BFN to some particular diffusive models.

L’assimilation de données est l’ensemble des techniques qui permettent de combiner un modèle et des observations. Le but est ici d’identifier l’état d’un système géophysique à partir de données discrètes en temps et en espace. Après un rappel de l’état de l’art en assimilation de données (méthode variationnelle 4D-VAR et approche duale 4D-PSAS, filtres séquentiels de type Kalman), nous présentons l’algorithme du nudging direct et rétrograde, ainsi que son extension naturelle (le nudging direct et rétrograde diffusif) à certains modèles géophysiques contenant un terme de diffusion.

Published online : 2017-12-13
DOI : https://doi.org/10.5802/afst.1552
@article{AFST_2017_6_26_4_767_0,
     author = {Didier Auroux},
     title = {Data assimilation for geophysical fluids},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     publisher = {Universit\'e Paul Sabatier, Toulouse},
     volume = {Ser. 6, 26},
     number = {4},
     year = {2017},
     pages = {767-793},
     doi = {10.5802/afst.1552},
     language = {en},
     url = {https://afst.centre-mersenne.org/item/AFST_2017_6_26_4_767_0}
}
Auroux, Didier. Data assimilation for geophysical fluids. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 26 (2017) no. 4, pp. 767-793. doi : 10.5802/afst.1552. afst.centre-mersenne.org/item/AFST_2017_6_26_4_767_0/

[1] L. Amodei Solution approchée pour un problème d’assimilation de données météorologiques avec prise en compte de l’erreur modèle, C. R. Acad. Sci. Paris, Ser. II, Tome 321 (1995), pp. 1087-1094

[2] Didier Auroux Étude de différentes méthodes d’assimilation de données pour l’environnement (2003) (Ph. D. Thesis)

[3] Didier Auroux Generalization of the dual variational data assimilation algorithm to a nonlinear layered quasi-geostrophic ocean model, Inverse Probl., Tome 23 (2007) no. 6, pp. 2485-2503 | Article | Zbl 1125.86005

[4] Didier Auroux The Back and Forth Nudging algorithm applied to a shallow water model, comparison and hybridization with the 4D-VAR, Int. J. Numer. Methods Fluids, Tome 61 (2009) no. 8, pp. 911-929 | Article | Zbl 1252.76058

[5] Didier Auroux; Patrick Bansart; Jacques Blum An evolution of the Back and Forth Nudging for geophysical data assimilation: application to Burgers equation and comparisons, Inverse Probl. Sci. Eng., Tome 21 (2013) no. 3, pp. 399-419 | Article | Zbl 1281.35093

[6] Didier Auroux; Jacques Blum Data assimilation methods for an oceanographic problem, Multidisciplinary methods for analysis optimization and control of complex systems (Mathematics in Industry) Tome 6, Springer, 2004 | Zbl 1125.86315

[7] Didier Auroux; Jacques Blum Back and forth nudging algorithm for data assimilation problems, C. R. Acad. Sci. Paris, Ser. I, Tome 340 (2005) no. 12, pp. 873-878 | Article | Zbl 1074.34006

[8] Didier Auroux; Jacques Blum A nudging-based data assimilation method for oceanographic problems: the Back and Forth Nudging (BFN) algorithm, Nonlin. Proc. Geophys., Tome 15 (2008), pp. 305-319 | Article

[9] Didier Auroux; Jacques Blum; Maëlle Nodet Diffusive Back and Forth Nudging algorithm for data assimilation, C. R. Acad. Sci. Paris, Ser. I, Tome 349 (2011) no. 15-16, pp. 849-854 | Article | Zbl 1222.86008

[10] Didier Auroux; Silvère Bonnabel Symmetry-based observers for some water-tank problems, IEEE Trans. Autom. Contr., Tome 56 (2011) no. 5, pp. 1046-1058 | Article | Zbl 1368.93042

[11] Didier Auroux; Maëlle Nodet The Back and Forth Nudging algorithm for data assimilation problems: theoretical results on transport equations, ESAIM, Control Optim. Calc. Var., Tome 18 (2012) no. 2, pp. 318-342 | Article | Zbl 1252.65159

[12] Andrew F. Bennett Inverse methods in physical oceanography, Cambridge Monographs on Mechanics and Applied Mathematics, Cambridge University Press, 1992, xvi+346 pages | Zbl 0782.76002

[13] Andrew F. Bennett Inverse Modeling of the Ocean and Atmosphere, Cambridge University Press, 2002, xxii+234 pages | Zbl 1043.86003

[14] Jacques Blum; François-Xavier Le Dimet; I. Michael Navon Data assimilation for geophysical fluids, Computational methods for the atmosphere and the oceans (Handbook of Numerical Analysis) Tome 14, Elsevier, 2009, pp. 385-441 | Article

[15] Alexandre Boilley; Jean-françois Mahfouf Assimilation of low-level wind in a high resolution mesoscale model using the back and forth nudging algorithm, Tellus A, Tome 64 (2012), 18697 pages | Article

[16] Charles George Broyden A new double-rank minimization algorithm, Notices American Math. Soc., Tome 16 (1969), 670 pages

[17] M. A. Cane; A. Kaplan; R. N. Miller; B. Tang; E. C. Hackert; A. J. Busalacchi Mapping tropical Pacific sea level: data assimilation via a reduced state Kalman filter, J. Geophys. Res., Tome 101(C10) (1996), pp. 22599-22617 | Article

[18] Alberto Carrassi; Stéphane Vannitsem Deterministic treatment of model error in geophysical data assimilation, Mathematical Paradigms of Climate Science (Springer INdAM Series) Tome 15 (2016), pp. 175-213 | Zbl 1365.86020

[19] Philippe Courtier Dual formulation of four-dimensional variational assimilation, Quart. J. R. Meteor. Soc., Tome 123 (1997), pp. 2449-2461 | Article

[20] Philippe Courtier; Olivier Talagrand Variational assimilation of meteorological observations with the adjoint equations Part 2. Numerical results, Quart. J. Roy. Meteor. Soc., Tome 113 (1987), pp. 1329-1347 | Article

[21] Ashley Donovan; Mazyar Mirrahimi; Pierre Rouchon Back and Forth Nudging for quantum state reconstruction, 4th Int. Symp. Communications Control Signal Proc. (2010), pp. 1-5 | Article

[22] Sophie Durbiano Vecteurs caractéristiques de modèles océaniques pour la réduction d’ordre en assimilation de données (2001) (Ph. D. Thesis)

[23] Geir Evensen Using the extended Kalman filter with a multilayer quasi-geostrophic ocean model, J. Geophys. Res., Tome 97 (1992), pp. 17905-17924 | Article

[24] Geir Evensen Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics, J. Geophys. Res., Tome 99 (1994) no. C5, pp. 10143-10162 | Article

[25] Geir Evensen The Ensemble Kalman Filter: theoretical formulation and practical implementation, Ocean Dynamics, Tome 53 (2003), pp. 343-367 | Article

[26] Geir Evensen Data assimilation: the Ensemble Kalman Filter, Springer, 2009

[27] Ichiro Fukumori Assimilation of Topex sea level measurements with a reduced-gravity, shallow water model of the tropical Pacific Ocean, J. Geophys. Res., Tome 100(C12) (1995), pp. 25027-25039 | Article

[28] Ichiro Fukumori; Benveniste Jérôme; Carl Wunsch; Dale B. Haidvogel Assimilation of sea surface topography into an ocean circulation model using a steady state smoother, J. Phys. Oceanogr., Tome 23 (1993), pp. 1831-1855 | Article

[29] Pierre Gauthier; Philippe Courtier; Patrick Moll Assimilation of simulated wind lidar data with a Kalman filter, Mon. Wea. Rev., Tome 121 (1993), pp. 1803-1820 | Article

[30] Arthur Gelb Applied Optimal Estimation, MIT Press, 1974

[31] Michael Ghil Meteorological data assimilation for oceanographers. Part I: Description and theoretical framework, Dyn. Atmos. Oceans, Tome 13 (1989) no. 3-4, pp. 171-218 | Article

[32] Michael Ghil; S.E. Cohn; A. Dalcher Sequential estimation, data assimilation and initialization, The interaction between objective analysis and initialization (Publ. Meteor.) Tome 127, McGill University, 1982

[33] Michael Ghil; Paola Manalotte-Rizzoli Data assimilation in meteorology and oceanography, Adv. Geophys., Tome 33 (1991), pp. 141-265 | Article

[34] Jean Charles Gilbert; Claude Lemaréchal Some numerical experiments with variable storage quasi-Newton algorithms, Math. Program., Tome 45 (1989), pp. 407-435 | Article | Zbl 0694.90086

[35] L. Gourdeau; Sabine Arnault; Y. Ménard; Jacques Merle GEOSAT sea-level assimilation in a tropical Atlantic model using Kalman filter, Ocean. Acta, Tome 15 (1992), pp. 567-574

[36] Andreas Griewank Automatic Differentiation, Princeton Companion to Applied Mathematics, Princeton University Press, 2014

[37] James E. Hoke; Richard A. Anthes The initialization of numerical models by a dynamic initialization technique, Mon. Wea. Rev., Tome 104 (1976), pp. 1551-1556 | Article

[38] William R. Holland The role of mesoscale eddies in the general circulation of the ocean, J. Phys. Oceanogr., Tome 8 (1978) no. 3, pp. 363-392 | Article

[39] P. L. Houtekamer; Herschel L. Mitchell Data assimilation using an ensemble Kalman filter technique, Mon. Wea. Rev., Tome 126 (1998), pp. 796-811 | Article

[40] Andrew H. Jazwinski Stochastic Processes and Filtering Theory, Mathematics in Science and Engineering, Tome 64, Academic Press, 1970, xiv+376 pages | Zbl 0203.50101

[41] Eugenia Kalnay Atmospheric modeling, data assimilation and predictability, Cambridge University Press, 2003, 341 pages

[42] François-Xavier Le Dimet; Olivier Talagrand Variational algorithms for analysis and assimilation of meteorological observations: theoretical aspects, Tellus A, Tome 38 (1986) no. 2, pp. 97-110 | Article

[43] Zaki Leghtas; Mazyar Mirrahimi; Pierre Rouchon Observer-based quantum state estimation by continuous weak measurement, American Control Conference (ACC) (2011), pp. 4334-4339

[44] J. M. Lewis; J. C. Derber The use of adjoint equations to solve a variational adjustment problem with convective constraints, Tellus A, Tome 37 (1985), pp. 309-322 | Article

[45] Jacques-Louis Lions Contrôle optimal de systèmes gouvernés par des équations aux dérivées partielles, Dunod, 1968, xii+426 pages | Zbl 0179.41801

[46] Dong C. Liu; Jorge Nocedal On the limited memory BFGS method for large scale optimization, Math. Program., Tome 45 (1989) no. 3, pp. 503-528 | Article | Zbl 0696.90048

[47] Stéphane Louvel Étude d’un algorithme d’assimilation variationnelle de données à contrainte faible. Mise en œuvre sur le modèle océanique aux équations primitives MICOM (1999) (Ph. D. Thesis)

[48] Stéphane Louvel Implementation of a dual variational algorithm for assimilation of synthetic altimeter data in the oceanic primitive equation model MICOM, J. Geophys. Res., Tome 106 (2001), pp. 9199-9212 | Article

[49] D. Luenberger Observers for multivariable systems, IEEE Trans. Autom. Contr., Tome 11 (1966), pp. 190-197 | Article

[50] Bruno Luong; Jacques Blum; Jacques Verron A variational method for the resolution of a data assimilation problem in oceanography, Inverse Probl., Tome 14 (1998), pp. 979-997 | Article

[51] Bijan Mohammadi; Olivier Pironneau Applied shape optimization for fluids, Numerical Mathematics and Scientific Computation, Clarendon Press, 2001, xvi+251 pages | Zbl 0970.76003

[52] Philippe Moireau; Dominique Chapelle Reduced-order Unscented Kalman Filtering with application to parameter identification in large-dimensional systems, ESAIM, Control Optim. Calc. Var., Tome 17 (2011) no. 2, pp. 380-405 (erratum in ibid 17 (2011), no. 2, p. 406-409) | Article | Zbl 1243.93114

[53] Andrew M. Moore Data assimilation in a quasi-geostrophic open-ocean model of the Gulf-Stream region using the adjoint model, J. Phys. Oceanogr., Tome 21 (1991), pp. 398-427 | Article

[54] D. A. Nechaev; M. I. Yaremchuk Application of the adjoint technique to processing of a standard section data set: world ocean circulation experiment section S4 along 67 S in the Pacific Ocean, J. Geophys. Res., Tome 100(C1) (1994), pp. 865-879 | Article

[55] Joseph Pedlosky Geophysical fluid dynamics, Springer, 1979, xii+624 pages | Zbl 0429.76001

[56] Dinh Tuan Pham; Jacques Verron; Marie-Christine Roubaud A Singular Evolutive Extended Kalman filter for data assimilation in oceanography, Inverse Probl., Tome 14 (1998), pp. 979-997 | Article

[57] Karim Ramdani; Marius Tucsnak; George Weiss Recovering the initial state of an infinite-dimensional system using observers, Automatica, Tome 46 (2010) no. 10, pp. 1616-1625 | Article | Zbl 1204.93023

[58] N. Rostaing-Schmidt; E. Hassold Basic function representation of programs for automatic differentiation in the Odyssée system, High performance computing in the geosciences, Kluwer Academic Publishers, 1994, pp. 207-222

[59] Jens Schröter; Ulrike Seiler; Manfred Wenzel Variational assimilation of GEOSAT data into an eddy-resolving model of the Gulf Stream area, J. Phys. Oceanogr., Tome 23 (1993), pp. 925-953 | Article

[60] Julio Sheinbaum; David L. T. Anderson Variational assimilation of XBT data. Part I, J. Phys. Oceanogr., Tome 20 (1990), pp. 672-688 | Article

[61] David R. Stauffer; Jian-Wen Bao Optimal determination of nudging coefficients using the adjoint equations, Tellus A, Tome 45 (1993), pp. 358-369 | Article

[62] David R. Stauffer; Nelson L. Seaman Use of four dimensional data assimilation in a limited area mesoscale model - Part 1: Experiments with synoptic-scale data, Mon. Wea. Rev., Tome 118 (1990), pp. 1250-1277 | Article

[63] Olivier Talagrand Assimilation of observations, an introduction, Journal of the Met. Soc. of Japan, Tome 75 (1997) no. 1B, pp. 191-209 | Article | Zbl 10.2151/jmsj1965.75.1B_191

[64] Olivier Talagrand; Philippe Courtier Variational assimilation of meteorological observations with the adjoint vorticity equation. Part I: Theory, Quart. J. R. Meteor. Soc., Tome 113 (1987), pp. 1311-1328 | Article

[65] William Carlisle Thacker; Robert Bryan Long Fitting dynamics to data, J. Geophys. Res., Tome 93 (1988), pp. 1227-1240 | Article

[66] F. Veersé; Didier Auroux; M. Fisher Limited-memory BFGS diagonal preconditioners for a data assimilation problem in meteorology, Optimization and Engineering, Tome 1 (2000) no. 3, pp. 323-339 | Article

[67] Jacques Verron; L. Gourdeau; D. T. Pham; R. Murtugudde; A. J. Busalacchi An extended Kalman filter to assimilate satellite altimeter data into a non-linear numerical model of the tropical Pacific Ocean: method and validation, J. Geophys. Res., Tome 104 (1999), pp. 5441-5458 | Article

[68] Jacques Verron; William R. Holland Impact de données d’altimétrie satellitaire sur les simulations numériques des circulations générales océaniques aux latitudes moyennes, Ann. Geophys., Tome 7 (1989) no. 1, pp. 31-46

[69] Arthur Vidard Vers une prise en compte des erreurs modèle en assimilation de données 4D-variationnelle - Application à un modèle réaliste d’océan (2001) (Ph. D. Thesis)

[70] Arthur Vidard; François-Xavier Le Dimet; A. Piacentini Determination of optimal nudging coefficients, Tellus A, Tome 55 (2003), pp. 1-15 | Article

[71] X. Zou; I. Michael Navon; François-Xavier Le Dimet An optimal nudging data assimilation scheme using parameter estimation, Quart. J. Roy. Meteor. Soc., Tome 118 (1992), pp. 1163-1186 | Article