logo AFST
Stochastic PDEs, Regularity structures, and interacting particle systems
Ajay Chandra; Hendrik Weber
Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 26 (2017) no. 4, p. 847-909

These lecture notes grew out of a series of lectures given by the second named author in short courses in Toulouse, Matsumoto, and Darmstadt. The main aim is to explain some aspects of the theory of “Regularity structures” developed recently by Hairer in [27]. This theory gives a way to study well-posedness for a class of stochastic PDEs that could not be treated previously. Prominent examples include the KPZ equation as well as the dynamic Φ 3 4 model.

Such equations can be expanded into formal perturbative expansions. Roughly speaking the theory of regularity structures provides a way to truncate this expansion after finitely many terms and to solve a fixed point problem for the “remainder”. The key ingredient is a new notion of “regularity” which is based on the terms of this expansion.

Ces notes sont basées sur trois cours que le deuxième auteur a donnés à Toulouse, Matsumoto et Darmstadt. L’objectif principal est d’expliquer certains aspects de la théorie des « structures de régularité » développée récemment par Hairer [27]. Cette théorie permet de montrer que certaines EDP stochastiques, qui ne pouvaient pas être traitées auparavant, sont bien posées. Parmi les exemples se trouvent l’équation KPZ et le modèle Φ 3 4 dynamique.

Telles équations peuvent être développées en séries perturbatives formelles. La théorie des structures de régularité permet de tronquer ce développement aprés un nombre fini de termes, et de résoudre un problème de point fixe pour le reste. L’idée principale est une nouvelle notion de régularité des distributions, qui dépend des termes de ce développement.

Published online : 2017-12-13
DOI : https://doi.org/10.5802/afst.1555
@article{AFST_2017_6_26_4_847_0,
     author = {Ajay Chandra and Hendrik Weber},
     title = {Stochastic PDEs, Regularity structures, and interacting particle systems},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     publisher = {Universit\'e Paul Sabatier, Toulouse},
     volume = {Ser. 6, 26},
     number = {4},
     year = {2017},
     pages = {847-909},
     doi = {10.5802/afst.1555},
     language = {en},
     url = {https://afst.centre-mersenne.org/item/AFST_2017_6_26_4_847_0}
}
Chandra, Ajay; Weber, Hendrik. Stochastic PDEs, Regularity structures, and interacting particle systems. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 26 (2017) no. 4, pp. 847-909. doi : 10.5802/afst.1555. afst.centre-mersenne.org/item/AFST_2017_6_26_4_847_0/

[1] Michael Aizenman Geometric analysis of ϕ 4 fields and Ising models. I, II, Commun. Math. Phys., Tome 86 (1982) no. 1, pp. 1-48 http://0-projecteuclid.org.pugwash.lib.warwick.ac.uk/getRecord?id=euclid.cmp/1103921614 | Article | MR 678000 (84f:81078) | Zbl 0533.58034

[2] Gideon Amir; Ivan Corwin; Jeremy Quastel Probability distribution of the free energy of the continuum directed random polymer in 1+1 dimensions, Commun. Pure Appl. Math., Tome 64 (2011) no. 4, pp. 466-537 | Article | MR 2796514 (2012b:60304) | Zbl 1222.82070

[3] Hajer Bahouri; Jean-Yves Chemin; Raphaël Danchin Fourier analysis and nonlinear partial differential equations, Grundlehren der Mathematischen Wissenschaften, Tome 343, Springer, 2011, xvi+523 pages | Zbl 1227.35004

[4] Lorenzo Bertini; Giambattista Giacomin Stochastic Burgers and KPZ equations from particle systems, Commun. Math. Phys., Tome 183 (1997) no. 3, pp. 571-607 | Article | MR 1462228 (99e:60212) | Zbl 0874.60059

[5] Lorenzo Bertini; Errico Presutti; Barbara Rüdiger; Ellen Saada Dynamical fluctuations at the critical point: convergence to a nonlinear stochastic PDE, Teor. Veroyatnost. i Primenen., Tome 38 (1993) no. 4, pp. 689-741 | Article | MR 1317994 (96m:60235) | Zbl 0819.60070

[6] Jean Bourgain Invariant measures for the 2D-defocusing nonlinear Schrödinger equation, Commun. Math. Phys., Tome 176 (1996) no. 2, pp. 421-445 | Article | Zbl 0852.35131

[7] David C Brydges; Jürg Fröhlich; Alan D Sokal A new proof of the existence and nontriviality of the continuum φ 2 4 and φ 3 4 quantum field theories, Commun. Math. Phys., Tome 91 (1983) no. 2, pp. 141-186 | Article

[8] Rémi Catellier; Khalil Chouk Paracontrolled distributions and the 3-dimensional stochastic quantization equation (2013) (https://arxiv.org/abs/1310.6869v1)

[9] Ivan Corwin; Jeremy Quastel Renormalization fixed point of the KPZ universality class, J. Stat. Phys., Tome 160 (2015) no. 4, pp. 815-834 | Article | Zbl 1327.82064

[10] Laure Coutin; Zhongmin Qian Stochastic analysis, rough path analysis and fractional Brownian motions, Probab. Theory Relat. Fields, Tome 122 (2002) no. 1, pp. 108-140 | Article | Zbl 1047.60029

[11] Giuseppe Da Prato; Arnaud Debussche Strong solutions to the stochastic quantization equations, Ann. Probab., Tome 31 (2003) no. 4, pp. 1900-1916 | Article | MR 2016604 (2005e:81117) | Zbl 1071.81070

[12] Giuseppe Da Prato; Jerzy Zabczyk Stochastic equations in infinite dimensions, Encyclopedia of Mathematics and its Applications, Tome 44, Cambridge University Press, Cambridge, 1992, xviii+454 pages | Article | MR 1207136 (95g:60073) | Zbl 076.60052

[13] Joel Feldman The λφ 3 4 field theory in a finite volume, Commun. Math. Phys., Tome 37 (1974) no. 2, pp. 93-120 | Article

[14] Jochen Fritz; Bernd Rüdiger Time dependent critical fluctuations of a one-dimensional local mean field model, Probab. Theory Relat. Fields, Tome 103 (1995) no. 3, pp. 381-407 | Article | MR 1358083 (97a:60142) | Zbl 0833.60095

[15] Peter K. Friz; Martin Hairer A course on rough paths, Universitext, Springer, 2014, xiv+251 pages | Zbl 1327.60013

[16] Jurg Fröhlich On the triviality of ΛΦ 4 theories and the approach to the critical-point in D4-dimensions, Nuclear Physics B, Tome 200 (1982) no. 2, pp. 281-296 | Article

[17] Tadahisa Funaki Random motion of strings and related stochastic evolution equations, Nagoya Math. J., Tome 89 (1983), pp. 129-193 | Article | Zbl 0531.60095

[18] Giambattista Giacomin; Joel L. Lebowitz; Errico Presutti Deterministic and stochastic hydrodynamic equations arising from simple microscopic model systems, Stochastic partial differential equations: six perspectives (Mathematical Surveys and Monographs) Tome 64, American Mathematical Society, 1999, pp. 107-152 | Article | MR 1661764 (2000f:60151) | Zbl 0927.60060

[19] James Glimm; Arthur Jaffe Quantum physics. A functional integral point of view, Springer, 1981, xx+417 pages | Zbl 0461.46051

[20] James Glimm; Arthur Jaffe; Thomas Spencer The Wightman axioms and particle structure in the P(ϕ) 2 quantum field model, Ann. Math., Tome 100 (1974) no. 3, pp. 585-632 | Article

[21] James Glimm; Arthur Jaffe; Thomas Spencer Phase transitions for ϕ 2 4 quantum fields, Commun. Math. Phys., Tome 45 (1975) no. 3, pp. 203-216 | Article | Zbl 0956.82501

[22] Massimiliano Gubinelli Controlling rough paths, J. Funct. Anal., Tome 216 (2004) no. 1, pp. 86-140 | Article | MR MR2091358 (2005k:60169) | Zbl 1058.60037

[23] Massimiliano Gubinelli; Peter Imkeller; Nicolas Perkowski Paracontrolled distributions and singular PDEs, Forum Math. Pi, Tome 3 (2015) (Article ID e6, 75 p.) | Article | Zbl 1333.60149

[24] Martin Hairer An Introduction to Stochastic PDEs (2009) (https://arxiv.org/abs/0907.4178)

[25] Martin Hairer Solving the KPZ equation, Ann. Math., Tome 178 (2013) no. 2, pp. 559-664 | Article | Zbl 1281.60060

[26] Martin Hairer Singular Stochastic PDES (2014) (https://arxiv.org/abs/1403.6353)

[27] Martin Hairer A theory of regularity structures, Invent. Math., Tome 198 (2014) no. 2, pp. 269-504 | Article | Zbl 1332.60093

[28] Martin Hairer Introduction to regularity structures, Braz. J. Probab. Stat., Tome 29 (2015) no. 2, pp. 175-210 | Article | Zbl 1316.81061

[29] Martin Hairer; Cyril Labbé Multiplicative stochastic heat equations on the whole space (2015) (https://arxiv.org/abs/1504.07162, to appear in J. Eur. Math. Soc.)

[30] Martin Hairer; Étienne Pardoux A Wong-Zakai theorem for Stochastic PDEs, J. Math. Soc. Japan, Tome 67 (2015) no. 4, pp. 1551-1604 | Article | Zbl 1341.60062

[31] Martin Hairer; Marc D. Ryser; Hendrik Weber Triviality of the 2D stochastic Allen-Cahn equation, Electron. J. Probab, Tome 17 (2012) no. 39, pp. 1-14 | Zbl 1245.60063

[32] Mehran Kardar; Giorgio Parisi; Yi-Cheng Zhang Dynamic Scaling of Growing Interfaces, Phys. Rev. Lett., Tome 56 (1986) no. 9, pp. 889-892 | Article | Zbl 1101.82329

[33] Peter E. Kloeden; Eckhard Platen Numerical solution of stochastic differential equations, Applications of Mathematics, Tome 23, Springer, 1992, xxxvi+632 pages | Article | MR 1214374 (94b:60069) | Zbl 0752.60043

[34] Nicolaĭ Vladimirovich Krylov Lectures on Elliptic and Parabolic Equations in Hölder Spaces, Graduate Studies in Mathematics, Tome 12, American Mathematical Society, 1996, xii+164 pages | Zbl 0865.35001

[35] Antti Kupiainen Renormalization Group and Stochastic PDEs, Ann. Henri Poincaré, Tome 17 (2015) no. 3, pp. 1-39 | Article | Zbl 1347.81063

[36] Terry J. Lyons Differential equations driven by rough signals, Rev. Mat. Iberoam., Tome 14 (1998) no. 2, pp. 215-310 | Article | MR 1654527 (2000c:60089) | Zbl 0923.34056

[37] Jean-Christophe Mourrat; Hendrik Weber Convergence of the two-dimensional dynamic Ising-Kac model to Φ 2 4 , Commun. Pure Appl. Math., Tome 70 (2017) no. 4, pp. 717-812 | Article | Zbl 1364.82013

[38] Jean-Christophe Mourrat; Hendrik Weber Global well-posedness of the dynamic Φ 4 model in the plane, Ann. Probab., Tome 45 (2017) no. 4, pp. 2398-2476 | Article | Zbl 06786085

[39] Andrea R. Nahmod; Gigliola Staffilani Almost sure well-posedness for the periodic 3D quintic nonlinear Schrödinger equation below the energy space, J. Eur. Math. Soc. (JEMS), Tome 17 (2015) no. 7, pp. 1687-1759 | Article | MR 3361727 | Zbl 1326.35353

[40] David Nualart The Malliavin calculus and related topics, Probability and Its Applications, Springer, 2006, xiv+382 pages | Zbl 1099.60003

[41] Rudolf Peierls On Ising’s model of ferromagnetism, Proc. Camb. Philos. Soc., Tome 32 (1936), pp. 477-481 | Article | Zbl 0014.33604

[42] Claudia Prévôt; Michael Röckner A concise course on stochastic partial differential equations, Lecture Notes in Mathematics, Tome 1905, Springer, Berlin, 2007, vi+144 pages | MR 2329435 (2009a:60069) | Zbl 1123.60001

[43] Jeremy Quastel; Herbert Spohn The one-dimensional KPZ equation and its universality class, J. Stat. Phys., Tome 160 (2015) no. 4, pp. 965-984 | Article | Zbl 1327.82069

[44] Tomohiro Sasamoto; Herbert Spohn One-dimensional Kardar-Parisi-Zhang equation: an exact solution and its universality, Phys. Rev. Lett., Tome 104 (2010) no. 23 (Article ID 230602) | Article

[45] Kazumasa A. Takeuchi; Masaki Sano Universal Fluctuations of Growing Interfaces: Evidence in Turbulent Liquid Crystals, Phys. Rev. Lett., Tome 104 (2010) no. 23 http://link.aps.org/doi/10.1103/PhysRevLett.104.230601 (Article ID 230601) | Article

[46] Eugene Wong; Moshe Zakai On the convergence of ordinary integrals to stochastic integrals, Ann. Math. Stat., Tome 36 (1965), pp. 1560-1564 | Article | MR 0195142 (33 #3345) | Zbl 0138.11201

[47] Eugene Wong; Moshe Zakai On the relation between ordinary and stochastic differential equations, Int. J. Eng. Sci., Tome 3 (1965), pp. 213-229 | Article | MR 0183023 (32 #505) | Zbl 0131.16401