logo AFST

Schauder estimates for an integro-differential equation with applications to a nonlocal Burgers equation
Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 27 (2018) no. 4, pp. 667-677.

Nous obtenons des estimées de Schauder pour une classe générale d’équations linéaires intégro-différentielles. Ces estimées sont utilisées pour obtenir un résultat d’existence globale pour une équation scalaire de Burgers non-locale [6].

We obtain Schauder estimates for a general class of linear integro-differential equations. The estimates are applied to a scalar non-local Burgers equation and complete the global well-posedness results obtained in [6].

Reçu le :
Accepté le :
Publié le :
DOI : https://doi.org/10.5802/afst.1581
@article{AFST_2018_6_27_4_667_0,
     author = {Cyril Imbert and Tianling Jin and Roman Shvydkoy},
     title = {Schauder estimates for an integro-differential equation with applications to a nonlocal Burgers equation},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     pages = {667--677},
     publisher = {Universit\'e Paul Sabatier, Toulouse},
     volume = {Ser. 6, 27},
     number = {4},
     year = {2018},
     doi = {10.5802/afst.1581},
     language = {en},
     url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1581/}
}
Cyril Imbert; Tianling Jin; Roman Shvydkoy. Schauder estimates for an integro-differential equation with applications to a nonlocal Burgers equation. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 27 (2018) no. 4, pp. 667-677. doi : 10.5802/afst.1581. https://afst.centre-mersenne.org/articles/10.5802/afst.1581/

[1] Luis Caffarelli; Chi Hin Chan; Alexis Vasseur Regularity theory for parabolic nonlinear integral operators, J. Am. Math. Soc., Volume 24 (2011) no. 3, pp. 849-869 | Zbl 1223.35098

[2] Luis Caffarelli; Luis Silvestre Regularity theory for fully nonlinear integro-differential equations, Commun. Pure Appl. Math., Volume 62 (2009) no. 5, pp. 597-638 | Zbl 1170.45006

[3] Hongjie Dong; Hong Zhang On Schauder estimates for a class of nonlocal fully nonlinear parabolic equations (2016) (https://arxiv.org/abs/1604.00101)

[4] Matthieu Felsinger; Moritz Kassmann Local regularity for parabolic nonlocal operators, Commun. Partial Differ. Equations, Volume 38 (2013) no. 9, pp. 1539-1573 | Zbl 1277.35090

[5] Mariano Giaquinta; Enrico Giusti On the regularity of the minima of variational integrals, Acta Math., Volume 148 (1982), pp. 31-46 | Zbl 0494.49031

[6] Cyril Imbert; Roman Shvydkoy; Francois Vigneron Global well-posedness of a non-local Burgers equation: The periodic case, Ann. Fac. Sci. Toulouse, Math., Volume 25 (2016) no. 4, pp. 723-758 | Zbl 1355.35190

[7] Tianling Jin; Jingang Xiong Schauder estimates for solutions of linear parabolic integro-differential equations, Discrete Contin. Dyn. Syst., Volume 35 (2015) no. 12, pp. 5977-5998 | Zbl 1334.35370

[8] Tianling Jin; Jingang Xiong Schauder estimates for nonlocal fully nonlinear equations, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 33 (2016) no. 5, pp. 1375-1407 | Zbl 1349.35386

[9] Héctor Chang Lara; Gonzalo Dàvila Regularity for solutions of non local parabolic equations, Calc. Var. Partial Differ. Equ. (2014), p. 1-2

[10] Frédéric Lelièvre Approximation des equations de navier-stokes préservant le changement d’échelle (2010) (Ph. D. Thesis)

[11] Frédéric Lelièvre A scaling and energy equality preserving approximation for the 3D Navier-Stokes equations in the finite energy case, Nonlinear Anal., Theory Methods Appl., Ser. A, Volume 74 (2011) no. 17, pp. 5902-5919 | Zbl 1262.76019

[12] Remigijus Mikulevicius; Henrikas Pragarauskas On the Cauchy problem for integro-differential operators in Hölder classes and the uniqueness of the martingale problem, Potential Anal., Volume 40 (2014) no. 4, pp. 539-563 | Zbl 1296.45009