We investigate the minimal singularities of metrics on a big line bundle over a projective manifold when the stable base locus of is a submanifold of codimension . Under some assumptions on the normal bundle and a neighborhood of , we give a explicit description of the minimal singularity of metrics on . We apply this result to study a higher (co-)dimensional analogue of Zariski’s example, in which the line bundle is not semi-ample, however it is nef and big.
Nous étudions les singularités minimales des métriques d’un fibre en droites sur une variété projective lorsque le locus de base stable de est une sous-variété de codimension . Sous certaines hypothèses sur le fibre normal et le voisinage de , nous donnons une description explicite de la singularité minimale des métriques de . Nous appliquons ce résultat pour étudier un analogue (co-dimensionnel) plus élevé de l’exemple de Zariski, dans lequel le fibre en droites n’est pas semi-ample, mais il est nef et gros.
Accepted:
Published online:
Genki Hosono 1; Takayuki Koike 2
@article{AFST_2020_6_29_1_149_0, author = {Genki Hosono and Takayuki Koike}, title = {On metrics with minimal singularities of line bundles whose stable base loci admit holomorphic tubular neighborhoods}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {149--175}, publisher = {Universit\'e Paul Sabatier, Toulouse}, volume = {Ser. 6, 29}, number = {1}, year = {2020}, doi = {10.5802/afst.1628}, language = {en}, url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1628/} }
TY - JOUR AU - Genki Hosono AU - Takayuki Koike TI - On metrics with minimal singularities of line bundles whose stable base loci admit holomorphic tubular neighborhoods JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2020 SP - 149 EP - 175 VL - 29 IS - 1 PB - Université Paul Sabatier, Toulouse UR - https://afst.centre-mersenne.org/articles/10.5802/afst.1628/ DO - 10.5802/afst.1628 LA - en ID - AFST_2020_6_29_1_149_0 ER -
%0 Journal Article %A Genki Hosono %A Takayuki Koike %T On metrics with minimal singularities of line bundles whose stable base loci admit holomorphic tubular neighborhoods %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2020 %P 149-175 %V 29 %N 1 %I Université Paul Sabatier, Toulouse %U https://afst.centre-mersenne.org/articles/10.5802/afst.1628/ %R 10.5802/afst.1628 %G en %F AFST_2020_6_29_1_149_0
Genki Hosono; Takayuki Koike. On metrics with minimal singularities of line bundles whose stable base loci admit holomorphic tubular neighborhoods. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 29 (2020) no. 1, pp. 149-175. doi : 10.5802/afst.1628. https://afst.centre-mersenne.org/articles/10.5802/afst.1628/
[1] Divisorial Zariski decompositions on compact complex manifolds, Ann. Sci. Éc. Norm. Supér., Volume 37 (2004) no. 1, pp. 45-76 | DOI | Numdam | MR | Zbl
[2] Monge-Ampère equations in big cohomology classes, Acta Math., Volume 205 (2010) no. 2, pp. 199-262 | DOI | Zbl
[3] Neighborhoods of analytic varieties, Monografías del Instituto de Matemática y Ciencias Afines, 35, Instituto de Matemática y Ciencias Afines; Pontificia Universidad Católica del Perú, 2003, v+90 pages | MR | Zbl
[4] Analytic methods in algebraic geometry, Surveys of Modern Mathematics, 1, International Press, Somerville, MA; Higher Education Press, 2012, viii+231 pages | MR | Zbl
[5] Complex Analytic and Differential Geometry, 2012 (monograph, available at http://www-fourier.ujf-grenoble.fr/~demailly)
[6] Pseudo-effective line bundles on compact Kähler manifolds, Int. J. Math., Volume 12 (2001) no. 6, pp. 689-741 | DOI | Zbl
[7] Classification theories of polarized varieties, London Mathematical Society Lecture Note Series, 155, Cambridge University Press, 1990, xiv+205 pages | MR | Zbl
[8] Über Modifikationen und exzeptionelle analytische Mengen, Math. Ann., Volume 146 (1962), pp. 331-368 | DOI | Zbl
[9] On the equivalence of imbeddings of exceptional complex spaces, Math. Ann., Volume 156 (1964), pp. 313-333 | DOI | MR | Zbl
[10] Minimal singular metrics of a line bundle admitting no Zariski decomposition, Tôhoku Math. J., Volume 67 (2015) no. 2, pp. 297-321 | DOI | MR | Zbl
[11] On minimal singular metrics of certain class of line bundles whose section ring is not finitely generated, Ann. Inst. Fourier, Volume 65 (2015) no. 5, pp. 1953-1967 | DOI | Numdam | MR | Zbl
[12] Higher codimensional Ueda theory for a compact submanifold with unitary flat normal bundle, Nagoya Math. J. (2018), pp. 1-33 | MR | Zbl
[13] Normal two-dimensional singularities, Annals of Mathematics Studies, 71, Princeton University Press; University of Tokyo Press, 1971, xi+161 pages | MR | Zbl
[14] Positivity in algebraic geometry. I. Classical setting: line bundles and linear series, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge., 48, Springer, 2004 | Zbl
[15] Zariski-decomposition and abundance, MSJ Memoirs, 14, Mathematical Society of Japan, 2004, xiv+277 pages | MR
[16] Digital Library of Mathematical Functions: Online Companion to NIST Handbook of Mathematical Functions (CUP) (2010) (National Insitute of Standards and Technology, http://dlmf.nist.gov)
[17] Strongly pseudoconvex manifolds, Lectures in Modern Analysis and Applications, I, Springer, 1969, pp. 10-29 | MR | Zbl
Cited by Sources: