On metrics with minimal singularities of line bundles whose stable base loci admit holomorphic tubular neighborhoods
Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 29 (2020) no. 1, pp. 149-175.

We investigate the minimal singularities of metrics on a big line bundle L over a projective manifold when the stable base locus Y of L is a submanifold of codimension r1. Under some assumptions on the normal bundle and a neighborhood of Y, we give a explicit description of the minimal singularity of metrics on L. We apply this result to study a higher (co-)dimensional analogue of Zariski’s example, in which the line bundle L is not semi-ample, however it is nef and big.

Nous étudions les singularités minimales des métriques d’un fibre en droites L sur une variété projective lorsque le locus de base stable Y de L est une sous-variété de codimension r1. Sous certaines hypothèses sur le fibre normal et le voisinage de Y, nous donnons une description explicite de la singularité minimale des métriques de L. Nous appliquons ce résultat pour étudier un analogue (co-dimensionnel) plus élevé de l’exemple de Zariski, dans lequel le fibre en droites L n’est pas semi-ample, mais il est nef et gros.

Received:
Accepted:
Published online:
DOI: 10.5802/afst.1628

Genki Hosono 1; Takayuki Koike 2

1 Mathematical Institute, Tohoku University, 6-3, Aramaki Aza-Aoba, Aoba-ku, Sendai, 980-8578 (Japan)
2 Graduate School of Science, Osaka City University, 3-3-138, Sugimoto, Sumiyoshi-ku Osaka, 558-8585 (Japan)
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{AFST_2020_6_29_1_149_0,
     author = {Genki Hosono and Takayuki Koike},
     title = {On metrics with minimal singularities of line bundles whose stable base loci admit holomorphic tubular neighborhoods},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     pages = {149--175},
     publisher = {Universit\'e Paul Sabatier, Toulouse},
     volume = {Ser. 6, 29},
     number = {1},
     year = {2020},
     doi = {10.5802/afst.1628},
     language = {en},
     url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1628/}
}
TY  - JOUR
AU  - Genki Hosono
AU  - Takayuki Koike
TI  - On metrics with minimal singularities of line bundles whose stable base loci admit holomorphic tubular neighborhoods
JO  - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY  - 2020
SP  - 149
EP  - 175
VL  - 29
IS  - 1
PB  - Université Paul Sabatier, Toulouse
UR  - https://afst.centre-mersenne.org/articles/10.5802/afst.1628/
DO  - 10.5802/afst.1628
LA  - en
ID  - AFST_2020_6_29_1_149_0
ER  - 
%0 Journal Article
%A Genki Hosono
%A Takayuki Koike
%T On metrics with minimal singularities of line bundles whose stable base loci admit holomorphic tubular neighborhoods
%J Annales de la Faculté des sciences de Toulouse : Mathématiques
%D 2020
%P 149-175
%V 29
%N 1
%I Université Paul Sabatier, Toulouse
%U https://afst.centre-mersenne.org/articles/10.5802/afst.1628/
%R 10.5802/afst.1628
%G en
%F AFST_2020_6_29_1_149_0
Genki Hosono; Takayuki Koike. On metrics with minimal singularities of line bundles whose stable base loci admit holomorphic tubular neighborhoods. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 29 (2020) no. 1, pp. 149-175. doi : 10.5802/afst.1628. https://afst.centre-mersenne.org/articles/10.5802/afst.1628/

[1] Sébastien Boucksom Divisorial Zariski decompositions on compact complex manifolds, Ann. Sci. Éc. Norm. Supér., Volume 37 (2004) no. 1, pp. 45-76 | DOI | Numdam | MR | Zbl

[2] Sébastien Boucksom; Philippe Eyssidieux; Vincent Guedj; Ahmed Zeriahi Monge-Ampère equations in big cohomology classes, Acta Math., Volume 205 (2010) no. 2, pp. 199-262 | DOI | Zbl

[3] César Camacho; Hossein Movasati Neighborhoods of analytic varieties, Monografías del Instituto de Matemática y Ciencias Afines, 35, Instituto de Matemática y Ciencias Afines; Pontificia Universidad Católica del Perú, 2003, v+90 pages | MR | Zbl

[4] Jean-Pierre Demailly Analytic methods in algebraic geometry, Surveys of Modern Mathematics, 1, International Press, Somerville, MA; Higher Education Press, 2012, viii+231 pages | MR | Zbl

[5] Jean-Pierre Demailly Complex Analytic and Differential Geometry, 2012 (monograph, available at http://www-fourier.ujf-grenoble.fr/~demailly)

[6] Jean-Pierre Demailly; Thomas Peternell; Michael Schneider Pseudo-effective line bundles on compact Kähler manifolds, Int. J. Math., Volume 12 (2001) no. 6, pp. 689-741 | DOI | Zbl

[7] Takao Fujita Classification theories of polarized varieties, London Mathematical Society Lecture Note Series, 155, Cambridge University Press, 1990, xiv+205 pages | MR | Zbl

[8] Hans Grauert Über Modifikationen und exzeptionelle analytische Mengen, Math. Ann., Volume 146 (1962), pp. 331-368 | DOI | Zbl

[9] Heisuke Hironaka; Hugo Rossi On the equivalence of imbeddings of exceptional complex spaces, Math. Ann., Volume 156 (1964), pp. 313-333 | DOI | MR | Zbl

[10] Takayuki Koike Minimal singular metrics of a line bundle admitting no Zariski decomposition, Tôhoku Math. J., Volume 67 (2015) no. 2, pp. 297-321 | DOI | MR | Zbl

[11] Takayuki Koike On minimal singular metrics of certain class of line bundles whose section ring is not finitely generated, Ann. Inst. Fourier, Volume 65 (2015) no. 5, pp. 1953-1967 | DOI | Numdam | MR | Zbl

[12] Takayuki Koike Higher codimensional Ueda theory for a compact submanifold with unitary flat normal bundle, Nagoya Math. J. (2018), pp. 1-33 | MR | Zbl

[13] Henry B. Laufer Normal two-dimensional singularities, Annals of Mathematics Studies, 71, Princeton University Press; University of Tokyo Press, 1971, xi+161 pages | MR | Zbl

[14] Robert Lazarsfeld Positivity in algebraic geometry. I. Classical setting: line bundles and linear series, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge., 48, Springer, 2004 | Zbl

[15] Noboru Nakayama Zariski-decomposition and abundance, MSJ Memoirs, 14, Mathematical Society of Japan, 2004, xiv+277 pages | MR

[16] F. W. Olver; D. M. Lozier; R. F. Boisvert; C. W. Clark Digital Library of Mathematical Functions: Online Companion to NIST Handbook of Mathematical Functions (CUP) (2010) (National Insitute of Standards and Technology, http://dlmf.nist.gov)

[17] Hugo Rossi Strongly pseudoconvex manifolds, Lectures in Modern Analysis and Applications, I, Springer, 1969, pp. 10-29 | MR | Zbl

Cited by Sources: