logo AFST
On logarithmic Sobolev inequalities for the heat kernel on the Heisenberg group
Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 29 (2020) no. 2, pp. 335-355.

Dans cette note, nous obtenons une inégalité de Sobolev logarithmique nouvelle pour le noyau de la chaleur sur le groupe de Heisenberg. La preuve est inspirée de la méthode historique de Leonard Gross à base de théorème limite central pour une marche aléatoire. Ici la nature non commutative des incréments produit un nouveau gradient qui fait intervenir naturellement un pont brownien sur le groupe de Heisenberg. Cette nouvelle inégalité contient l’inégalité de Sobolev logarithmique optimale pour la mesure gaussienne en deux dimensions. Nous comparons cette nouvelle inégalité avec l’inégalité sous-elliptique de Hong-Quan Li et avec les inégalités plus récentes de Fabrice Baudoin et Nicola Garofalo obtenues avec un critère de courbure généralisé. Enfin nous étendons notre inégalités au cas des groupes de Carnot homogène de rang deux.

In this note, we derive a new logarithmic Sobolev inequality for the heat kernel on the Heisenberg group. The proof is inspired from the historical method of Leonard Gross with the Central Limit Theorem for a random walk. Here the non commutative nature of the increments produces a new gradient which naturally involves a Brownian bridge on the Heisenberg group. This new inequality contains the optimal logarithmic Sobolev inequality for the Gaussian distribution in two dimensions. We compare this new inequality with the sub-elliptic logarithmic Sobolev inequality of Hong-Quan Li and with the more recent inequality of Fabrice Baudoin and Nicola Garofalo obtained using a generalized curvature criterion. Finally, we extend this inequality to the case of homogeneous Carnot groups of rank two.

Reçu le :
Accepté le :
Publié le :
DOI : https://doi.org/10.5802/afst.1633
Classification : 22E30,  35R03,  35A23,  60J65
Mots clés : Heisenberg group, Heat kernel, Brownian Motion, Poincaré inequality, Logarithmic Sobolev inequality, Random Walk, Central Limit Theorem
@article{AFST_2020_6_29_2_335_0,
     author = {Michel Bonnefont and Djalil Chafa{\"\i} and Ronan Herry},
     title = {On logarithmic {Sobolev} inequalities for the heat kernel on the {Heisenberg} group},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     pages = {335--355},
     publisher = {Universit\'e Paul Sabatier, Toulouse},
     volume = {Ser. 6, 29},
     number = {2},
     year = {2020},
     doi = {10.5802/afst.1633},
     language = {en},
     url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1633/}
}
TY  - JOUR
AU  - Michel Bonnefont
AU  - Djalil Chafaï
AU  - Ronan Herry
TI  - On logarithmic Sobolev inequalities for the heat kernel on the Heisenberg group
JO  - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY  - 2020
DA  - 2020///
SP  - 335
EP  - 355
VL  - Ser. 6, 29
IS  - 2
PB  - Université Paul Sabatier, Toulouse
UR  - https://afst.centre-mersenne.org/articles/10.5802/afst.1633/
UR  - https://doi.org/10.5802/afst.1633
DO  - 10.5802/afst.1633
LA  - en
ID  - AFST_2020_6_29_2_335_0
ER  - 
Michel Bonnefont; Djalil Chafaï; Ronan Herry. On logarithmic Sobolev inequalities for the heat kernel on the Heisenberg group. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 29 (2020) no. 2, pp. 335-355. doi : 10.5802/afst.1633. https://afst.centre-mersenne.org/articles/10.5802/afst.1633/

[1] Dominique Bakry; Fabrice Baudoin; Michel Bonnefont; Djalil Chafaï On gradient bounds for the heat kernel on the Heisenberg group, J. Funct. Anal., Volume 255 (2008) no. 8, pp. 1905-1938 | Article | MR 2462581 | Zbl 1156.58009

[2] Dominique Bakry; Ivan Gentil; Michel Ledoux Analysis and geometry of Markov diffusion operators, Grundlehren der Mathematischen Wissenschaften, Volume 348, Springer, 2014, xx+552 pages | MR 3155209 | Zbl 1376.60002

[3] Fabrice Baudoin An introduction to the geometry of stochastic flows, Imperial College Press, 2004, x+140 pages | Zbl 1085.60002

[4] Fabrice Baudoin Stochastic analysis on sub-Riemannian manifolds with transverse symmetries, Ann. Probab., Volume 45 (2017) no. 1, pp. 56-81 | Article | MR 3601645 | Zbl 1386.58019

[5] Fabrice Baudoin; Michel Bonnefont Log-Sobolev inequalities for subelliptic operators satisfying a generalized curvature dimension inequality, J. Funct. Anal., Volume 262 (2012) no. 6, pp. 2646-2676 | Article | MR 2885961 | Zbl 1254.58004

[6] Fabrice Baudoin; Nicola Garofalo Curvature-dimension inequalities and Ricci lower bounds for sub-Riemannian manifolds with transverse symmetries, J. Eur. Math. Soc., Volume 19 (2017) no. 1, pp. 151-219 | Article | MR 3584561 | Zbl 1359.53018

[7] Richard Beals; Bernard Gaveau; Peter C. Greiner Hamilton-Jacobi theory and the heat kernel on Heisenberg groups, J. Math. Pures Appl., Volume 79 (2000) no. 7, pp. 633-689 | Article | MR 1776501 | Zbl 0959.35035

[8] Andrea Bonfiglioli; Ermanno Lanconelli; Francesco Uguzzoni Stratified Lie groups and potential theory for their sub-Laplacians, Springer Monographs in Mathematics, Springer, 2007, xxvi+800 pages | Zbl 1128.43001

[9] Michel Bonnefont Inégalités fonctionnelles pour des noyaux de la chaleur sous-elliptiques (2009) (Ph. D. Thesis)

[10] Bruce K. Driver; Tai Melcher Hypoelliptic heat kernel inequalities on the Heisenberg group, J. Funct. Anal., Volume 221 (2005) no. 2, pp. 340-365 | Article | MR 2124868

[11] Nathaniel Eldredge Gradient estimates for the subelliptic heat kernel on H-type groups, J. Funct. Anal., Volume 258 (2010) no. 2, pp. 504-533 | Article | MR 2557945 | Zbl 1185.43004

[12] Leonard Gross Logarithmic Sobolev inequalities, Am. J. Math., Volume 97 (1975) no. 4, pp. 1061-1083 | Article | MR 420249

[13] Leonard Gross Logarithmic Sobolev inequalities on Lie groups, Ill. J. Math., Volume 36 (1992) no. 3, pp. 447-490 | Article | MR 1161977 | Zbl 0761.46019

[14] Waldemar Hebisch; Boguslaw Zegarliński Coercive inequalities on metric measure spaces, J. Funct. Anal., Volume 258 (2010) no. 3, pp. 814-851 | Article | MR 2558178 | Zbl 1189.26032

[15] Hermann Hueber; Detlef Müller Asymptotics for some Green kernels on the Heisenberg group and the Martin boundary, Math. Ann., Volume 283 (1989) no. 1, pp. 97-119 | Article | MR 973806 | Zbl 0639.31005

[16] David Jerison; Antonio Sánchez-Calle Subelliptic, second order differential operators, Complex analysis, III (College Park, Md., 1985–86) (Lecture Notes in Mathematics) Volume 1277, Springer, 1987, pp. 46-77 | MR 922334 | Zbl 0634.35017

[17] Hong-Quan Li Estimation optimale du gradient du semi-groupe de la chaleur sur le groupe de Heisenberg, J. Funct. Anal., Volume 236 (2006) no. 2, pp. 369-394 | MR 2240167 | Zbl 1106.22009

[18] Hong-Quan Li Estimations optimales du noyau de la chaleur sur les groupes de type Heisenberg, J. Reine Angew. Math., Volume 646 (2010), pp. 195-233 | MR 2719560 | Zbl 1220.22002

[19] Richard Montgomery A tour of subriemannian geometries, their geodesics and applications, Mathematical Surveys and Monographs, Volume 91, American Mathematical Society, 2002, xx+259 pages | MR 1867362 | Zbl 1044.53022

[20] Daniel Neuenschwander Probabilities on the Heisenberg group. Limit theorems and Brownian motion, Lecture Notes in Mathematics, Volume 1630, Springer, 1996, viii+139 pages | MR 1439509 | Zbl 0870.60007

[21] Daniel W. Stroock; S. R. S. Varadhan Limit theorems for random walks on Lie groups, Sankhyā, Ser. A, Volume 35 (1973) no. 3, pp. 277-294 | MR 517406 | Zbl 0299.60007

[22] Donald Wehn Probabilities on Lie groups, Proc. Natl. Acad. Sci. USA, Volume 48 (1962), pp. 791-795 | Article | MR 153042 | Zbl 0111.14104

Cité par Sources :