Nous formulons une correspondance de Riemann–Hilbert géométrique qui s’applique à la dérivation par Jimbo et Sakai de l’équation -PVI à partir de conditions « d’isomonodromie ». C’est une étape d’un travail en cours en vue de l’application de la -isomonodromie et des -isoStokes à -Painlevé.
We formulate a geometric Riemann–Hilbert correspondence that applies to the derivation by Jimbo and Sakai of equation -PVI from “isomonodromy” conditions. This is a step within work in progress towards the application of -isomonodromy and -isoStokes to -Painlevé.
Yousuke Ohyama 1 ; Jean-Pierre Ramis 2 ; Jacques Sauloy 3
@article{AFST_2020_6_29_5_1119_0, author = {Yousuke Ohyama and Jean-Pierre Ramis and Jacques Sauloy}, title = {The space of monodromy data for the {Jimbo{\textendash}Sakai} family of $q$-difference equations}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {1119--1250}, publisher = {Universit\'e Paul Sabatier, Toulouse}, volume = {Ser. 6, 29}, number = {5}, year = {2020}, doi = {10.5802/afst.1659}, language = {en}, url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1659/} }
TY - JOUR AU - Yousuke Ohyama AU - Jean-Pierre Ramis AU - Jacques Sauloy TI - The space of monodromy data for the Jimbo–Sakai family of $q$-difference equations JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2020 SP - 1119 EP - 1250 VL - 29 IS - 5 PB - Université Paul Sabatier, Toulouse UR - https://afst.centre-mersenne.org/articles/10.5802/afst.1659/ DO - 10.5802/afst.1659 LA - en ID - AFST_2020_6_29_5_1119_0 ER -
%0 Journal Article %A Yousuke Ohyama %A Jean-Pierre Ramis %A Jacques Sauloy %T The space of monodromy data for the Jimbo–Sakai family of $q$-difference equations %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2020 %P 1119-1250 %V 29 %N 5 %I Université Paul Sabatier, Toulouse %U https://afst.centre-mersenne.org/articles/10.5802/afst.1659/ %R 10.5802/afst.1659 %G en %F AFST_2020_6_29_5_1119_0
Yousuke Ohyama; Jean-Pierre Ramis; Jacques Sauloy. The space of monodromy data for the Jimbo–Sakai family of $q$-difference equations. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Volume à la mémoire de Hiroshi Umemura : “Équations de Painlevé et théories de Galois différentielles”, Tome 29 (2020) no. 5, pp. 1119-1250. doi : 10.5802/afst.1659. https://afst.centre-mersenne.org/articles/10.5802/afst.1659/
[1] Exact WKB analysis of holomorphic blocks, J. High Energ. Phys., Volume 2019 (2019) no. 10, 75, 29 pages | MR | Zbl
[2] Conjugacy classes in loop groups and -bundles on elliptic curves, Int. Math. Res. Not., Volume 1996 (1996) no. 15, pp. 733-751 | DOI | MR | Zbl
[3] Complex algebraic surfaces, London Mathematical Society Student Texts, 34, Cambridge University Press, 1996, ix+132 pages | MR | Zbl
[4] The generalized Riemann problem for linear differential equations and the allied problems for linear difference and -difference equations, Proc. Amer. Acad., Volume 49 (1913), pp. 521-568 | DOI | Zbl
[5] Note on a canonical form for the linear -difference system, Proc. Natl. Acad. Sci. USA, Volume 27 (1941), pp. 218-222 | DOI | MR | Zbl
[6] From Klein to Painlevé via Fourier, Laplace and Jimbo, Proc. Lond. Math. Soc., Volume 90 (2005) no. 1, pp. 167-208 | DOI | MR | Zbl
[7] Six results on Painlevé VI, Théories asymptotiques et équations de Painlevé, Société Mathématique de France, 2006, pp. 1-20 | MR | Zbl
[8] Geometry and braiding of Stokes data; fission and wild character varieties, Ann. Math., Volume 179 (2014) no. 1, pp. 301-365 | DOI | MR | Zbl
[9] Poisson varieties from Riemann surfaces, Indag. Math., New Ser., Volume 25 (2014) no. 5, pp. 872-900 | DOI | MR | Zbl
[10] On the classification of cubic surfaces, J. Lond. Math. Soc., Volume 19 (1979), pp. 245-256 | DOI | MR | Zbl
[11] Dynamics on character varieties and Malgrange irreducibility of Painlevé VI equation, Ann. Inst. Fourier, Volume 59 (2009) no. 7, pp. 2927-2978 | DOI | Numdam | Zbl
[12] Sulle superficie di genere zero, Mem. delle Soc. Ital. delle Scienze, ser. III, Volume 10 (1895), pp. 103-123
[13] A memoir on cubic surfaces, Phil. Trans. Roy. Soc., Volume 159 (1869), pp. 231-326 | Zbl
[14] Painlevé monodromy manifolds, decorated character varieties, and cluster algebras, Int. Math. Res. Not., Volume 2017 (2017) no. 24, pp. 7639-7691 | Zbl
[15] A brief introduction to Enriques surfaces (2014) (https://arxiv.org/abs/1412.7744) | Zbl
[16] Classification et géométrie des équations aux -différences : étude globale de -Painlevé, classification non isoformelle et Stokes à pentes arbitraires, Ph. D. Thesis, Université Paul Sabatier, Toulouse (France) (2016)
[17] Introduzione alla geometria sopra le superficie algebriche, Mem. Soc. It. d. Scienze (III), Volume X (1896), pp. 211-312 | Zbl
[18] Sopra le superficie algebriche di bigenere uno, Mem. Soc. It. d. Scienze (III), Volume XIV (1906), pp. 327-352 | Zbl
[19] Galois groups and connection matrices for -difference equations, Electron. Res. Announc. Am. Math. Soc., Volume 1 (1995) no. 1, pp. 1-9 | DOI | MR | Zbl
[20] Painlevé transcendents. The Riemann–Hilbert approach, Mathematical Surveys and Monographs, 128, American Mathematical Society, 2006, xii+553 pages | Zbl
[21] Über lineare homogene Differentialgleichungen zweiter Ordnung mit drei im Endlichen gelegenen wesentlich singulären Stellen, Math. Ann., Volume 63 (1907), pp. 301-321 | DOI | MR | Zbl
[22] Sur des équations différentielles du troisième ordre dont l’intégrale générale est uniforme et sur une classe d’équations nouvelles d’ordre supérieur dont l’intégrale générale a ses points critiques fixes, Ann. Sci. Éc. Norm. Supér. (3), Volume 29 (1912), pp. 1-126 | DOI | Numdam | Zbl
[23] Sur les singularités irrégulières des équations différentielles linéaires, Journ. de Math. (8), Volume 2 (1919), pp. 99-200 | Zbl
[24] Fredholm determinant and Nekrasov sum representations of isomonodromic tau functions, Commun. Math. Phys., Volume 363 (2018) no. 1, pp. 1-58 | DOI | MR | Zbl
[25] Trace coordinates on Fricke spaces of some simple hyperbolic surfaces, Handbook of Teichmüller theory. Volume II (IRMA Lectures in Mathematics and Theoretical Physics), Volume 13, European Mathematical Society, 2009, pp. 611-684 | DOI | MR | Zbl
[26] Do integrable mappings have the Painlevé property?, Phys. Rev. Lett., Volume 67 (1991) no. 14, pp. 1825-1828 | DOI | Zbl
[27] The elliptic representation of the general Painlevé VI equation, Commun. Pure Appl. Math., Volume 55 (2002) no. 10, pp. 1280-1363 | DOI | MR | Zbl
[28] Enriques surfaces and Jacobian elliptic surfaces, Math. Z., Volume 268 (2011) no. 3-4, pp. 1025-1056 | DOI | MR | Zbl
[29] Lectures on surfaces, Cambridge Studies in Advanced Mathematics, 158, Cambridge University Press, 2016 | MR | Zbl
[30] Moduli of parabolic connections on curves and the Riemann–Hilbert correspondence, J. Algebr. Geom., Volume 22 (2013) no. 3, pp. 407-480 | DOI | MR | Zbl
[31] Dynamics of the sixth Painlevé equation, Théories asymptotiques et équations de Painlevé, Société Mathématique de France, 2006, pp. 103-167 | Zbl
[32] Moduli of stable parabolic connections, Riemann-Hilbert correspondence and geometry of Painlevé equation of type VI, part I, Publ. Res. Inst. Math. Sci., Volume 42 (2006), pp. 987-1089 | DOI
[33] Isomonodromic tau-functions from Liouville conformal blocks, Commun. Math. Phys., Volume 336 (2015) no. 2, pp. 671-694 | DOI | MR | Zbl
[34] A modular group action on cubic surfaces and the monodromy of the Painlevé VI equation., Proc. Japan Acad., Ser. A, Volume 78 (2002) no. 7, pp. 131-135 | Zbl
[35] From Gauß to Painlevé. A modern theory of special functions. Dedicated to Tosihusa Kimura on the occasion of his sixtieth birthday, Aspects of Mathematics, E16, Vieweg & Sohn, 1991, x+347 pages | Zbl
[36] Singular Cubic Surfaces and the Dynamics of Painlevé VI, 2009 (https://arxiv.org/abs/0909.5269)
[37] Monodromy problem and the boundary condition for some Painlevé equations, Publ. Res. Inst. Math. Sci., Volume 18 (1982), pp. 1137-1161 | DOI | Zbl
[38] Monodromy preserving deformation of linear ordinary differential equations with rational coefficients. II, Physica D, Volume 2 (1981) no. 3, pp. 407-448 | DOI | MR | Zbl
[39] Monodromy preserving deformation of linear ordinary differential equations with rational coefficients. I: General theory and -function, Physica D, Volume 2 (1981) no. 2, pp. 306-352 | DOI | MR | Zbl
[40] CFT approach to the -Painlevé VI equation, J. Integrable Sys., Volume 2 (2017) no. 1, xyx009, 27 pages | Zbl
[41] A -analog of the sixth Painlevé equation, Lett. Math. Phys., Volume 38 (1996) no. 2, pp. 145-154 | DOI | Zbl
[42] Analytic solutions of - near its critical points., Nonlinearity, Volume 29 (2016) no. 12, pp. 3696-3742 | DOI | MR | Zbl
[43] The wild monodromy of the Painlevé V equation and its action on the wild character variety: an approach of confluence (2016) (https://arxiv.org/abs/1609.05185)
[44]
(in preparation)[45] Rings of Fricke characters and automorphism groups of free groups, Math. Z., Volume 170 (1980), pp. 91-103 | DOI | MR | Zbl
[46] Asymptotic behaviour around a boundary point of the -Painlevé VI equation and its connection problem, Nonlinearity, Volume 23 (2010) no. 7, pp. 1585-1608 | DOI | MR | Zbl
[47] Elementary acceleration and multisummability. I, Ann. Inst. Henri Poincaré, Phys. Théor., Volume 54 (1991) no. 4, pp. 331-401 | Numdam | MR | Zbl
[48] Rational solutions of the Painlevé VI equation, J. Phys. A, Math. Gen., Volume 34 (2001) no. 11, pp. 2281-2294 | DOI | Zbl
[49] Doubly periodic monopoles and -difference modules (2019) (https://arxiv.org/abs/1902.03551)
[50] Lecture notes on and Enriques surfaces, Contributions to algebraic geometry. Impanga lecture notes. Based on the Impanga conference on algebraic geometry, Banach Center, Bȩdlewo, Poland, July 4–10, 2010 (EMS Series of Congress Reports), European Mathematical Society, 2012, pp. 389-405 | MR | Zbl
[51] Lax forms of the -Painlevé equations, J. Phys. A, Math. Theor., Volume 42 (2009) no. 11, 115201, 17 pages | MR | Zbl
[52] A unified approach to -special functions of the Laplace type (2011) (https://arxiv.org/abs/1103.5232)
[53] Connection formula of basic hypergeometric series , J. Math., Tokushima Univ., Volume 51 (2017), pp. 29-36 | MR | Zbl
[54] Sur les feuilletages associes aux équation du second ordre à points critiques fixes de P. Painleve, Jpn. J. Math., New Ser., Volume 5 (1979), pp. 1-79 | DOI | Zbl
[55] Isomonodromic deformation and Painlevé equations, and the Garnier system, J. Fac. Sci., Univ. Tokyo, Sect. I A, Volume 33 (1986), pp. 575-618 | MR | Zbl
[56] Studies of the Painlevé equations. I: Sixth Painlevé equation , Ann. Mat. Pura Appl., Volume 146 (1987), pp. 337-381 | DOI | Zbl
[57] Mémoire sur les équations différentielles dont l’intégrale générale est uniforme, S. M. F. Bull., Volume 28 (1900), pp. 201-261 | Zbl
[58] The formal classification of linear difference operators, Indag. Math., Volume 45 (1983), pp. 249-261 | DOI | MR | Zbl
[59] Espaces de modules pour des équations différentielles linéaires et équations de Painlevé, Ann. Inst. Fourier, Volume 59 (2009) no. 7, pp. 2611-2667 | Zbl
[60] Galois theory of difference equations, Lecture Notes in Mathematics, 1666, Springer, 1997, vii+180 pages | MR | Zbl
[61] Discrete versions of the Painlevé equations, Phys. Rev. Lett., Volume 67 (1991) no. 14, pp. 1829-1832 | DOI | Zbl
[62] The -analogue of the wild fundamental group and the inverse problem of the Galois theory of -difference equations, Ann. Sci. Éc. Norm. Supér., Volume 48 (2015) no. 1, pp. 171-226 | DOI | MR | Zbl
[63] Local analytic classification of -difference equations, Astérisque, 355, Société Mathématique de France, 2013 | Numdam | Zbl
[64] Galois groups of the basic hypergeometric equations, Pac. J. Math., Volume 235 (2008) no. 2, pp. 303-322 | DOI | MR | Zbl
[65] Generalized basic hypergeometric equations, Invent. Math., Volume 184 (2011) no. 3, pp. 499-528 | DOI | MR | Zbl
[66] Birkhoff matrices, residues and rigidity for -difference equations, J. Reine Angew. Math., Volume 706 (2015), pp. 215-244 | MR | Zbl
[67] Euler characteristics and -difference equations, Ann. Sc. Norm. Super. Pisa, Cl. Sci. (5), Volume 19 (2019) no. 1, pp. 129-154 | MR | Zbl
[68] Rational surfaces associated with affine root systems and geometry of the Painlevé equations, Commun. Math. Phys., Volume 220 (2001) no. 1, pp. 165-229 | DOI | MR | Zbl
[69] Spectral types of linear -difference equations and -analog of middle convolution, Int. Math. Res. Not., Volume 2017 (2017) no. 7, pp. 1975-2013 | MR | Zbl
[70] Aspects of holonomic quantum fields isomonodromic deformation and ising model, Complex analysis, microlocal calculus and relativistic quantum theory. Proceedings of the colloquium held at Les Houches, Centre de Physique, September 1979. (Lecture Notes in Physics), Volume 126, Springer, 1980 | MR | Zbl
[71] Théorie analytique locale des équations aux -différences de pentes arbitraires (In preparation)
[72] Systèmes aux -différences singuliers réguliers: classification, matrice de connexion et monodromie, Ann. Inst. Fourier, Volume 50 (2000) no. 4, pp. 1021-1071 | DOI | Numdam | MR | Zbl
[73] Galois theory of Fuchsian -difference equations, Ann. Sci. Éc. Norm. Supér., Volume 36 (2003) no. 6, pp. 925-968 | DOI | Numdam | MR | Zbl
[74] On the distribution of surfaces of the third order into species, Phil. Trans. Roy. Soc., Volume 153 (1864), pp. 193-247
[75] Über eine Klasse von Differentialsystemen beliebiger Ordnung mit festen kritischen Punkten., J. Reine Angew. Math., Volume 141 (1912), pp. 96-145 | Zbl
[76] Elliptic surfaces, Algebraic Geometry in East Asia – Seoul 2008 (2010), pp. 51-160 | DOI | Zbl
[77] Groupes algébriques et corps de classes., Actualités Scientifiques et Industrielles, Hermann, 1984 | Zbl
[78] A quantum deformation of the Virasoro algebra and the Macdonald symmetric functions, Lett. Math. Phys., Volume 38 (1996) no. 1, pp. 33-51 | DOI | MR | Zbl
[79] Monodromy of -difference equations in 3D supersymmetric gauge theories, Ph. D. Thesis, Ludwigs-Maximilans-Universität München (Germany) (2016-2017)
Cité par Sources :