Dans cet article, on donne un théorème d’unicité pour des applications méromorphes de
In this paper, using techniques of value distribution theory, we give a uniqueness theorem for meromorphic mappings of
@article{AFST_2006_6_15_2_217_0, author = {Gerd Dethloff and Tran Van Tan}, title = {Uniqueness problem for meromorphic mappings with truncated multiplicities and few targets}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {217--242}, publisher = {Universit\'e Paul Sabatier, Institut de Math\'ematiques}, address = {Toulouse}, volume = {Ser. 6, 15}, number = {2}, year = {2006}, doi = {10.5802/afst.1120}, mrnumber = {2244216}, zbl = {1111.32016}, language = {en}, url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1120/} }
TY - JOUR AU - Gerd Dethloff AU - Tran Van Tan TI - Uniqueness problem for meromorphic mappings with truncated multiplicities and few targets JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2006 SP - 217 EP - 242 VL - 15 IS - 2 PB - Université Paul Sabatier, Institut de Mathématiques PP - Toulouse UR - https://afst.centre-mersenne.org/articles/10.5802/afst.1120/ DO - 10.5802/afst.1120 LA - en ID - AFST_2006_6_15_2_217_0 ER -
%0 Journal Article %A Gerd Dethloff %A Tran Van Tan %T Uniqueness problem for meromorphic mappings with truncated multiplicities and few targets %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2006 %P 217-242 %V 15 %N 2 %I Université Paul Sabatier, Institut de Mathématiques %C Toulouse %U https://afst.centre-mersenne.org/articles/10.5802/afst.1120/ %R 10.5802/afst.1120 %G en %F AFST_2006_6_15_2_217_0
Gerd Dethloff; Tran Van Tan. Uniqueness problem for meromorphic mappings with truncated multiplicities and few targets. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 15 (2006) no. 2, pp. 217-242. doi : 10.5802/afst.1120. https://afst.centre-mersenne.org/articles/10.5802/afst.1120/
[1] Uniqueness problem for meromorphic mappings with truncated multiplicities and moving targets, 2004 (Preprint math.CV/0405557)
[2] An extension of uniqueness theorems for meromorphic mappings, 2004 (Preprint math.CV/0405558)
[3] The uniqueness problem of meromorphic maps into the complex projective space, Nagoya Math. J., Volume 58 (1975), pp. 1-23 | MR | Zbl
[4] Uniqueness problem with truncated multiplicities in value distribution theory, Nagoya Math. J., Volume 152 (1998), pp. 131-152 | MR | Zbl
[5] Uniqueness problem with truncated multiplicities in value distribution theory, II, Nagoya Math. J., Volume 155 (1999), pp. 161-188 | MR | Zbl
[6] Uniqueness problem without multiplicities in value distribution theory, Pacific J. Math., Volume 135 (1988), pp. 323-348 | MR | Zbl
[7] Unique range sets for holomorphic curves, Acta Math. Vietnam, Volume 27 (2002), pp. 343-348 | MR | Zbl
[8] Einige Eindeutigkeitssätze in der Theorie der meromorphen Funktionen, Acta. Math., Volume 48 (1926), pp. 367-391
[9] The Second Main Theorem for moving targets, J. Geom. Anal., Volume 1 (1991), pp. 99-138 | MR | Zbl
[10] A uniqueness theorem with moving targets without counting multiplicity, Proc. Amer. Math. Soc., Volume 129 (2002), pp. 2701-2707 | MR | Zbl
[11] Geometric conditions for unicity of holomorphic curves, Contemp. Math., Volume 25 (1983), pp. 149-154 | MR | Zbl
[12] Uniqueness problem of meromorphic mappings in several complex variables for moving targets, Tohoku Math. J., Volume 54 (2002), pp. 567-579 | MR | Zbl
[13] Two meromorphic functions sharing five small functions in the sense
Cité par Sources :