In this paper, using techniques of value distribution theory, we give a uniqueness theorem for meromorphic mappings of into with truncated multiplicities and “few" targets. We also give a theorem of linear degeneration for such maps with truncated multiplicities and moving targets.
Dans cet article, on donne un théorème d’unicité pour des applications méromorphes de dans avec multiplicités coupées et avec « peu de » cibles. On donne aussi un théorème de dégénération linéaire pour des telles applications avec multiplicités coupées et avec des cibles mobiles. Les preuves utilisent des techniques de la distribution des valeurs.
@article{AFST_2006_6_15_2_217_0, author = {Gerd Dethloff and Tran Van Tan}, title = {Uniqueness problem for meromorphic mappings with truncated multiplicities and few targets}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {217--242}, publisher = {Universit\'e Paul Sabatier, Institut de Math\'ematiques}, address = {Toulouse}, volume = {Ser. 6, 15}, number = {2}, year = {2006}, doi = {10.5802/afst.1120}, mrnumber = {2244216}, zbl = {1111.32016}, language = {en}, url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1120/} }
TY - JOUR AU - Gerd Dethloff AU - Tran Van Tan TI - Uniqueness problem for meromorphic mappings with truncated multiplicities and few targets JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2006 SP - 217 EP - 242 VL - 15 IS - 2 PB - Université Paul Sabatier, Institut de Mathématiques PP - Toulouse UR - https://afst.centre-mersenne.org/articles/10.5802/afst.1120/ DO - 10.5802/afst.1120 LA - en ID - AFST_2006_6_15_2_217_0 ER -
%0 Journal Article %A Gerd Dethloff %A Tran Van Tan %T Uniqueness problem for meromorphic mappings with truncated multiplicities and few targets %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2006 %P 217-242 %V 15 %N 2 %I Université Paul Sabatier, Institut de Mathématiques %C Toulouse %U https://afst.centre-mersenne.org/articles/10.5802/afst.1120/ %R 10.5802/afst.1120 %G en %F AFST_2006_6_15_2_217_0
Gerd Dethloff; Tran Van Tan. Uniqueness problem for meromorphic mappings with truncated multiplicities and few targets. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 15 (2006) no. 2, pp. 217-242. doi : 10.5802/afst.1120. https://afst.centre-mersenne.org/articles/10.5802/afst.1120/
[1] Uniqueness problem for meromorphic mappings with truncated multiplicities and moving targets, 2004 (Preprint math.CV/0405557)
[2] An extension of uniqueness theorems for meromorphic mappings, 2004 (Preprint math.CV/0405558)
[3] The uniqueness problem of meromorphic maps into the complex projective space, Nagoya Math. J., Volume 58 (1975), pp. 1-23 | MR | Zbl
[4] Uniqueness problem with truncated multiplicities in value distribution theory, Nagoya Math. J., Volume 152 (1998), pp. 131-152 | MR | Zbl
[5] Uniqueness problem with truncated multiplicities in value distribution theory, II, Nagoya Math. J., Volume 155 (1999), pp. 161-188 | MR | Zbl
[6] Uniqueness problem without multiplicities in value distribution theory, Pacific J. Math., Volume 135 (1988), pp. 323-348 | MR | Zbl
[7] Unique range sets for holomorphic curves, Acta Math. Vietnam, Volume 27 (2002), pp. 343-348 | MR | Zbl
[8] Einige Eindeutigkeitssätze in der Theorie der meromorphen Funktionen, Acta. Math., Volume 48 (1926), pp. 367-391
[9] The Second Main Theorem for moving targets, J. Geom. Anal., Volume 1 (1991), pp. 99-138 | MR | Zbl
[10] A uniqueness theorem with moving targets without counting multiplicity, Proc. Amer. Math. Soc., Volume 129 (2002), pp. 2701-2707 | MR | Zbl
[11] Geometric conditions for unicity of holomorphic curves, Contemp. Math., Volume 25 (1983), pp. 149-154 | MR | Zbl
[12] Uniqueness problem of meromorphic mappings in several complex variables for moving targets, Tohoku Math. J., Volume 54 (2002), pp. 567-579 | MR | Zbl
[13] Two meromorphic functions sharing five small functions in the sense , Nagoya Math. J., Volume 167 (2002), pp. 35-54 | MR | Zbl
Cited by Sources: