logo AFST
From the Prékopa-Leindler inequality to modified logarithmic Sobolev inequality
Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 17 (2008) no. 2, pp. 291-308.

We develop in this paper an improvement of the method given by S. Bobkov and M. Ledoux in [BL00]. Using the Prékopa-Leindler inequality, we prove a modified logarithmic Sobolev inequality adapted for all measures on n , with a strictly convex and super-linear potential. This inequality implies modified logarithmic Sobolev inequality, developed in [GGM05, GGM07], for all uniformly strictly convex potential as well as the Euclidean logarithmic Sobolev inequality.

Dans cet article nous améliorons la méthode exposée par S. Bobkov et M. Ledoux dans [BL00]. En utilisant l’inégalité de Prékopa-Leindler, nous prouvons une inégalité de Sobolev logarithmique modifiée, adaptée à toutes les mesures sur n possédant un potentiel strictement convexe et super-linéaire. Cette inégalité implique en particulier une inégalité de Sobolev logarithmique modifiée, développée dans [GGM05, GGM07], pour les mesures ayant un potentiel uniformément strictement convexe mais aussi une inégalité de Sobolev logarithmique de type euclidien.

DOI: 10.5802/afst.1184
Ivan Gentil 1

1 CEREMADE (UMR CNRS 7534), Université Paris-Dauphine, Place du maréchal de Lattre de Tassigny, 75775 Paris Cedex 16, France
@article{AFST_2008_6_17_2_291_0,
     author = {Ivan Gentil},
     title = {From the {Pr\'ekopa-Leindler} inequality to modified logarithmic {Sobolev} inequality},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     pages = {291--308},
     publisher = {Universit\'e Paul Sabatier, Institut de Math\'ematiques},
     address = {Toulouse},
     volume = {Ser. 6, 17},
     number = {2},
     year = {2008},
     doi = {10.5802/afst.1184},
     mrnumber = {2487856},
     language = {en},
     url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1184/}
}
TY  - JOUR
TI  - From the Prékopa-Leindler inequality to modified logarithmic Sobolev inequality
JO  - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY  - 2008
DA  - 2008///
SP  - 291
EP  - 308
VL  - Ser. 6, 17
IS  - 2
PB  - Université Paul Sabatier, Institut de Mathématiques
PP  - Toulouse
UR  - https://afst.centre-mersenne.org/articles/10.5802/afst.1184/
UR  - https://www.ams.org/mathscinet-getitem?mr=2487856
UR  - https://doi.org/10.5802/afst.1184
DO  - 10.5802/afst.1184
LA  - en
ID  - AFST_2008_6_17_2_291_0
ER  - 
%0 Journal Article
%T From the Prékopa-Leindler inequality to modified logarithmic Sobolev inequality
%J Annales de la Faculté des sciences de Toulouse : Mathématiques
%D 2008
%P 291-308
%V Ser. 6, 17
%N 2
%I Université Paul Sabatier, Institut de Mathématiques
%C Toulouse
%U https://doi.org/10.5802/afst.1184
%R 10.5802/afst.1184
%G en
%F AFST_2008_6_17_2_291_0
Ivan Gentil. From the Prékopa-Leindler inequality to modified logarithmic Sobolev inequality. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 17 (2008) no. 2, pp. 291-308. doi : 10.5802/afst.1184. https://afst.centre-mersenne.org/articles/10.5802/afst.1184/

[ABC+00] Ané (C.), Blachère (S.), Chafaï (D.), Fougères (P.), Gentil (I.), Malrieu (F.), Roberto (C.), and Scheffer (G.).— Sur les inégalités de Sobolev logarithmiques, volume 10 of Panoramas et Synthèses. Société Mathématique de France, Paris, (2000). | MR | Zbl

[AGK04] Agueh (M.), Ghoussoub (N.), and Kang (X.).— Geometric inequalities via a general comparison principle for interacting gases. Geom. Funct. Anal., 14(1), p. 215-244 (2004). | MR | Zbl

[BÉ85] Bakry (D.) and Émery (M.).— Diffusions hypercontractives. In Séminaire de probabilités, XIX, 1983/84, volume 1123 of Lecture Notes in Math., p. 177-206. Springer, (1985). | Numdam | MR | Zbl

[Bec99] Beckner (W.).— Geometric asymptotics and the logarithmic Sobolev inequality. Forum Math., 11(1):105-137, (1999). | MR | Zbl

[BGL01] Bobkov (S.), Gentil (I.), and Ledoux (M.).— Hypercontractivity of Hamilton-Jacobi equations. J. Math. Pu. Appli., 80(7), p. 669-696 (2001). | MR | Zbl

[BL00] Bobkov (S. G.) and Ledoux (M.).— From Brunn-Minkowski to Brascamp-Lieb and to logarithmic Sobolev inequalities. Geom. Funct. Anal., 10(5), p. 1028-1052 (2000). | MR | Zbl

[BZ05] Bobkov (S.G.) and Zegarlinski (B.).— Entropy bounds and isoperimetry. Mem. Am. Math. Soc., 829, 69 p. (2005). | MR

[Car91] Carlen (E. A.).— Superadditivity of Fisher’s information and logarithmic Sobolev inequalities. J. Funct. Anal., 101(1), p. 194-211 (1991). | Zbl

[CEGH04] Cordero-Erausquin (D.), Gangbo (W.), and Houdré (C.).— Inequalities for generalized entropy and optimal transportation. In Recent advances in the theory and applications of mass transport, volume 353 of Contemp. Math., p. 73-94. Amer. Math. Soc., Providence, RI, (2004). | MR | Zbl

[DPD03] Del Pino (M.) and Dolbeault (J.).— The optimal Euclidean L p -Sobolev logarithmic inequality. J. Funct. Anal., 197(1), p. 151-161 (2003). | MR | Zbl

[DPDG04] Del Pino (M.), Dolbeault (J.), and Gentil (I.).— Nonlinear diffusions, hypercontractivity and the optimal L p -Euclidean logarithmic Sobolev inequality. J. Math. Anal. Appl., 293(2), p. 375-388 (2004). | MR | Zbl

[Gen03] Gentil (I.).— The general optimal L p -Euclidean logarithmic Sobolev inequality by Hamilton-Jacobi equations. J. Funct. Anal., 202(2), p. 591-599 (2003). | MR

[GGM05] Gentil (I.), Guillin (A.), and Miclo (L.).— Modified logarithmic Sobolev inequalities and transportation inequalities. Probab. Theory Related Fields, 133(3), p. 409-436 (2005). | MR | Zbl

[GGM07] Gentil (I.), Guillin (A.), and Miclo (L.).— Logarithmic sobolev inequalities in curvature null. Rev. Mat. Iberoamericana, 23(1), p. 237-260 (2007). | MR | Zbl

[Gro75] Gross (L.).— Logarithmic Sobolev inequalities. Amer. J. Math., 97(4), p. 1061-1083 (1975). | MR | Zbl

[Gup80] Gupta (S. D.).— Brunn-Minkowski inequality and its aftermath. J. Multivariate Anal., 10, p. 296-318 (1980). | MR | Zbl

[Mau04] Maurey (B.).— Inégalité de Brunn-Minkowski-Lusternik, et autres inégalités géométriques et fonctionnelles. Séminaire Bourbaki, 928, (2003/04). | Numdam | MR | Zbl

[OV00] Otto (F.) and Villani (C.).— Generalization of an inequality by Talagrand, and links with the logarithmic Sobolev inequality. J. Funct. Anal., 173(2), p. 361-400 (2000). | MR | Zbl

[Tal95] Talagrand (M.).— Concentration of measure and isoperimetric inequalities in product spaces. Inst. Hautes Études Sci. Publ. Math., (81), p. 73-205 (1995). | Numdam | MR | Zbl

[Wei78] Weissler (F. B.).— Logarithmic Sobolev inequalities for the heat-diffusion semigroup. Trans. Am. Math. Soc., 237, p. 255-269 (1978). | MR | Zbl

Cited by Sources: