The symmetric property (τ) for the Gaussian measure
Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 17 (2008) no. 2, pp. 357-370.

We give a proof, based on the Poincaré inequality, of the symmetric property (τ) for the Gaussian measure. If f: d is continuous, bounded from below and even, we define Hf(x)=inf y f(x+y)+1 2|y| 2 and we have

e-fdγdeHfdγd1.

This property is equivalent to a certain functional form of the Blaschke-Santaló inequality, as explained in a paper by Artstein, Klartag and Milman.

On dérive de l’inégalité de Poincaré la propriété (τ) symétrique pour la mesure Gaussienne. Si f: d est continue, minorée et paire, on a, en posant Hf(x)=inf y f(x+y)+1 2|y| 2   :

e-fdγdeHfdγd1.

Comme indiqué dans un article d’Artstein, Klartag et Milman, cette propriété est équivalente à l’une des versions fonctionnelles de l’inégalité de Blaschke-Santaló.

DOI: 10.5802/afst.1186

Joseph Lehec 1

1 Université Paris-Est, Laboratoire d’Analyse et de Mathématiques Appliquées (UMR 8050), Cité Descartes - 5, boulevard Descartes, Champs-sur-Marne, 77454 Marne la Vallée Cedex 2, France.
@article{AFST_2008_6_17_2_357_0,
     author = {Joseph Lehec},
     title = {The symmetric property~($\tau $) for the {Gaussian} measure},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     pages = {357--370},
     publisher = {Universit\'e Paul Sabatier, Institut de Math\'ematiques},
     address = {Toulouse},
     volume = {Ser. 6, 17},
     number = {2},
     year = {2008},
     doi = {10.5802/afst.1186},
     mrnumber = {2487858},
     language = {en},
     url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1186/}
}
TY  - JOUR
AU  - Joseph Lehec
TI  - The symmetric property ($\tau $) for the Gaussian measure
JO  - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY  - 2008
SP  - 357
EP  - 370
VL  - 17
IS  - 2
PB  - Université Paul Sabatier, Institut de Mathématiques
PP  - Toulouse
UR  - https://afst.centre-mersenne.org/articles/10.5802/afst.1186/
DO  - 10.5802/afst.1186
LA  - en
ID  - AFST_2008_6_17_2_357_0
ER  - 
%0 Journal Article
%A Joseph Lehec
%T The symmetric property ($\tau $) for the Gaussian measure
%J Annales de la Faculté des sciences de Toulouse : Mathématiques
%D 2008
%P 357-370
%V 17
%N 2
%I Université Paul Sabatier, Institut de Mathématiques
%C Toulouse
%U https://afst.centre-mersenne.org/articles/10.5802/afst.1186/
%R 10.5802/afst.1186
%G en
%F AFST_2008_6_17_2_357_0
Joseph Lehec. The symmetric property ($\tau $) for the Gaussian measure. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 17 (2008) no. 2, pp. 357-370. doi : 10.5802/afst.1186. https://afst.centre-mersenne.org/articles/10.5802/afst.1186/

[1] Artstein-Avidan (S.), Klartag (B.), and Milman (V.).— The Santaló point of a function, and a functional form of Santaló inequality, Mathematika 51, p. 33-48 (2005). | MR | Zbl

[2] Ball (K.).— Isometric problems in p and sections of convex sets, PhD dissertation, University of Cambridge, (1986).

[3] Ball (K.).— An elementary introduction to modern convex geometry, Flavors of geometry, edited by S. Levy, Cambridge University Press, (1997). | MR | Zbl

[4] Berger (M.).— Geometry, vol. I-II, translated from the French by M. Cole and S. Levy, Universitext, Springer, (1987). | Zbl

[5] Caffarelli (L.A.).— Monotonicity properties of optimal transportation and the FKG and related inequalities, Comm. math. phys. 214, no. 3, p. 547-563 (2000). | MR | Zbl

[6] Cordero-Erausquin (D.), Fradelizi (M.), and Maurey (B.).— The (B) conjecture for the Gaussian measure of dilates of symmetric convex sets and related problems, J. Funct. Anal. 214, p. 410-427 (2004). | MR | Zbl

[7] Fradelizi (M.) and Meyer (M.).— Some functional forms of Blaschke-Santaló inequality, Math. Z., 256, no. 2, p. 379-395 (2007). | MR | Zbl

[8] Klartag (B.).— Marginals of geometric inequalities, Geometric Aspects of Functional Analysis, Lecture Notes in Math. 1910, Springer, p. 133-166 (2007). | MR | Zbl

[9] Ledoux (M.).— The concentration of measure phenomenon, Mathematical Surveys and Monographs, American Mathematical Society, (2001). | MR | Zbl

[10] Lutwak (E.) and Zhang (G.).— Blaschke-Santaló inequalities, J. Diff. Geom. 47, no. 1, p. 1-16 (1997). | MR | Zbl

[11] Maurey (B.).— Some deviation inequalities, Geom. Funct. Anal. 1, no. 2, p. 188-197 (1991). | MR | Zbl

[12] Meyer (M.) and Pajor (A.).— On Santaló’s inequality, Geometric Aspects of Functional Analysis, Lecture Notes in Math. 1376, Springer, 1989, p. 261-263. | Zbl

[13] Pisier (G.).— The volume of convex bodies and Banach space geometry, Cambridge Tracts in Mathematics, Cambridge University Press, (1989). | MR | Zbl

[14] Saint-Raymond (J.).— Sur le volume des corps convexes symétriques, in Séminaire d’initiation à l’Analyse, 20ème année, edited by G. Choquet, M. Rogalski and J. Saint-Raymond, Publ. Math. Univ. Pierre et Marie Curie, 1981. | Zbl

[15] Santaló (L.A.).— Un invariante afin para los cuerpos convexos del espacio de n dimensiones, Portugaliae Math. 8, p. 155-161 (1949). | Zbl

Cited by Sources: