We give a proof, based on the Poincaré inequality, of the symmetric property () for the Gaussian measure. If is continuous, bounded from below and even, we define and we have
This property is equivalent to a certain functional form of the Blaschke-Santaló inequality, as explained in a paper by Artstein, Klartag and Milman.
On dérive de l’inégalité de Poincaré la propriété () symétrique pour la mesure Gaussienne. Si est continue, minorée et paire, on a, en posant :
Comme indiqué dans un article d’Artstein, Klartag et Milman, cette propriété est équivalente à l’une des versions fonctionnelles de l’inégalité de Blaschke-Santaló.
@article{AFST_2008_6_17_2_357_0, author = {Joseph Lehec}, title = {The symmetric property~($\tau $) for the {Gaussian} measure}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {357--370}, publisher = {Universit\'e Paul Sabatier, Institut de Math\'ematiques}, address = {Toulouse}, volume = {Ser. 6, 17}, number = {2}, year = {2008}, doi = {10.5802/afst.1186}, mrnumber = {2487858}, language = {en}, url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1186/} }
TY - JOUR AU - Joseph Lehec TI - The symmetric property ($\tau $) for the Gaussian measure JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2008 SP - 357 EP - 370 VL - 17 IS - 2 PB - Université Paul Sabatier, Institut de Mathématiques PP - Toulouse UR - https://afst.centre-mersenne.org/articles/10.5802/afst.1186/ DO - 10.5802/afst.1186 LA - en ID - AFST_2008_6_17_2_357_0 ER -
%0 Journal Article %A Joseph Lehec %T The symmetric property ($\tau $) for the Gaussian measure %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2008 %P 357-370 %V 17 %N 2 %I Université Paul Sabatier, Institut de Mathématiques %C Toulouse %U https://afst.centre-mersenne.org/articles/10.5802/afst.1186/ %R 10.5802/afst.1186 %G en %F AFST_2008_6_17_2_357_0
Joseph Lehec. The symmetric property ($\tau $) for the Gaussian measure. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 17 (2008) no. 2, pp. 357-370. doi : 10.5802/afst.1186. https://afst.centre-mersenne.org/articles/10.5802/afst.1186/
[1] Artstein-Avidan (S.), Klartag (B.), and Milman (V.).— The Santaló point of a function, and a functional form of Santaló inequality, Mathematika 51, p. 33-48 (2005). | MR | Zbl
[2] Ball (K.).— Isometric problems in and sections of convex sets, PhD dissertation, University of Cambridge, (1986).
[3] Ball (K.).— An elementary introduction to modern convex geometry, Flavors of geometry, edited by S. Levy, Cambridge University Press, (1997). | MR | Zbl
[4] Berger (M.).— Geometry, vol. I-II, translated from the French by M. Cole and S. Levy, Universitext, Springer, (1987). | Zbl
[5] Caffarelli (L.A.).— Monotonicity properties of optimal transportation and the FKG and related inequalities, Comm. math. phys. 214, no. 3, p. 547-563 (2000). | MR | Zbl
[6] Cordero-Erausquin (D.), Fradelizi (M.), and Maurey (B.).— The (B) conjecture for the Gaussian measure of dilates of symmetric convex sets and related problems, J. Funct. Anal. 214, p. 410-427 (2004). | MR | Zbl
[7] Fradelizi (M.) and Meyer (M.).— Some functional forms of Blaschke-Santaló inequality, Math. Z., 256, no. 2, p. 379-395 (2007). | MR | Zbl
[8] Klartag (B.).— Marginals of geometric inequalities, Geometric Aspects of Functional Analysis, Lecture Notes in Math. 1910, Springer, p. 133-166 (2007). | MR | Zbl
[9] Ledoux (M.).— The concentration of measure phenomenon, Mathematical Surveys and Monographs, American Mathematical Society, (2001). | MR | Zbl
[10] Lutwak (E.) and Zhang (G.).— Blaschke-Santaló inequalities, J. Diff. Geom. 47, no. 1, p. 1-16 (1997). | MR | Zbl
[11] Maurey (B.).— Some deviation inequalities, Geom. Funct. Anal. 1, no. 2, p. 188-197 (1991). | MR | Zbl
[12] Meyer (M.) and Pajor (A.).— On Santaló’s inequality, Geometric Aspects of Functional Analysis, Lecture Notes in Math. 1376, Springer, 1989, p. 261-263. | Zbl
[13] Pisier (G.).— The volume of convex bodies and Banach space geometry, Cambridge Tracts in Mathematics, Cambridge University Press, (1989). | MR | Zbl
[14] Saint-Raymond (J.).— Sur le volume des corps convexes symétriques, in Séminaire d’initiation à l’Analyse, 20ème année, edited by G. Choquet, M. Rogalski and J. Saint-Raymond, Publ. Math. Univ. Pierre et Marie Curie, 1981. | Zbl
[15] Santaló (L.A.).— Un invariante afin para los cuerpos convexos del espacio de dimensiones, Portugaliae Math. 8, p. 155-161 (1949). | Zbl
Cited by Sources: