logo AFST
Legendrian graphs and quasipositive diagrams
Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 18 (2009) no. 2, pp. 285-305.

In this paper we clarify the relationship between ribbon surfaces of Legendrian graphs and quasipositive diagrams by using certain fence diagrams. As an application, we give an alternative proof of a theorem concerning a relationship between quasipositive fiber surfaces and contact structures on S 3 . We also answer a question of L. Rudolph concerning moves of quasipositive diagrams.

Nous étudions ici la relation entre les surfaces de ruban associées aux graphs legendriens et les diagrammes quasi-positifs. Comme application, nous donnons une preuve élémentaire qu’une surface fibrée est quasi-positive, si et seulement si elle porte la structure de contact standard dans S 3 . Nous répondons aussi à une question de L. Rudolph concernant les mouvements des surfaces quasi-positives

Received:
Accepted:
Published online:
DOI: 10.5802/afst.1207
Sebastian Baader 1; Masaharu Ishikawa 2

1 Department of Mathematics, ETH Zürich, Switzerland
2 Mathematical Institute, Tohoku University, Sendai, 980-8578, Japan
@article{AFST_2009_6_18_2_285_0,
     author = {Sebastian Baader and Masaharu Ishikawa},
     title = {Legendrian graphs and quasipositive diagrams},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     pages = {285--305},
     publisher = {Universit\'e Paul Sabatier, Toulouse},
     volume = {Ser. 6, 18},
     number = {2},
     year = {2009},
     doi = {10.5802/afst.1207},
     zbl = {1206.57005},
     mrnumber = {2562830},
     language = {en},
     url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1207/}
}
TY  - JOUR
TI  - Legendrian graphs and quasipositive diagrams
JO  - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY  - 2009
DA  - 2009///
SP  - 285
EP  - 305
VL  - Ser. 6, 18
IS  - 2
PB  - Université Paul Sabatier, Toulouse
UR  - https://afst.centre-mersenne.org/articles/10.5802/afst.1207/
UR  - https://zbmath.org/?q=an%3A1206.57005
UR  - https://www.ams.org/mathscinet-getitem?mr=2562830
UR  - https://doi.org/10.5802/afst.1207
DO  - 10.5802/afst.1207
LA  - en
ID  - AFST_2009_6_18_2_285_0
ER  - 
%0 Journal Article
%T Legendrian graphs and quasipositive diagrams
%J Annales de la Faculté des sciences de Toulouse : Mathématiques
%D 2009
%P 285-305
%V Ser. 6, 18
%N 2
%I Université Paul Sabatier, Toulouse
%U https://doi.org/10.5802/afst.1207
%R 10.5802/afst.1207
%G en
%F AFST_2009_6_18_2_285_0
Sebastian Baader; Masaharu Ishikawa. Legendrian graphs and quasipositive diagrams. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 18 (2009) no. 2, pp. 285-305. doi : 10.5802/afst.1207. https://afst.centre-mersenne.org/articles/10.5802/afst.1207/

[1] Akbulut (S.), Ozbagci (B.).— Lefschetz fibrations on compact Stein surfaces, Geometry & Topology 5, p. 319-334 (2001). | MR: 1825664 | Zbl: 1002.57062

[2] Chekanov (Y.).— Differential algebra of Legendrian links, Invent. Math. 150, p. 441-483 (2002). | MR: 1946550 | Zbl: 1029.57011

[3] Eliashberg (Y.), Fraser (M.).— Classification of topologically trivial Legendrian knots, in Geometry, topology, and dynamics (Montreal, PQ, 1995), pp. 17-51, CRM Proc. Lecture Notes 15, A.M.S., Providence, RI, (1998). | MR: 1619122 | Zbl: 0907.53021

[4] Etnyre (J.B.).— Lectures on open book decompositions and contact structures, Floer homology, gauge theory, and low-dimensional topology, pp. 103-141, Clay Math. Proc., 5, A.M.S., Providence, RI, 2006. | MR: 2249250 | Zbl: 1108.53050

[5] Etnyre (J.B.), Honda (K.).— Knots and contact geometry. I. Torus knots and the figure eight knot, J. Symplectic Geom. 1, p. 63-120 (2001). | MR: 1959579 | Zbl: 1037.57021

[6] Giroux (E.).— Convexité en topologie de contact, Comment. Math. Helvetici 66, p. 637-677 (1991). | MR: 1129802 | Zbl: 0766.53028

[7] Giroux (E.).— Géométrie de contact : de la dimension trois vers dimensions supérieures, Proceedings of the International Congress of Mathematicians, Vol II (Beijing, 2002), pp.405-414, Higher Ed. Press, Beijing, (2002). | MR: 1957051 | Zbl: 1015.53049

[8] Gompf (R.E.).— Handlebody construction of Stein surfaces, Ann. of Math. 148, p. 619-693 (1998). | MR: 1668563 | Zbl: 0919.57012

[9] Goodman (N.).— Contact structures and open books, Ph. D thesis, UT Austin, (2003).

[10] Harer (J.).— How to construct all fibered knots and links, Topology 21, p. 263-280 (1982). | MR: 649758 | Zbl: 0504.57002

[11] Hedden (M.).— Notions of positivity and the Ozsváth-Szabó concordance invariant, to appear in J. Knot Theory Ramifications, available at: arXiv.math.GT/0509499. | MR: 2372849

[12] Hedden (M.).— Some remarks on cabling, contact structures, and complex curves, to appear in Proc. Gökova Geom. Topol. Conference, 2007, available at: arXiv.math.GT/0804.4327.

[13] Ng (L.L.).— Computable Legendrian invariants, Topology 42 (2003), no. 1, 55-82. | MR: 1928645 | Zbl: 1032.53070

[14] D. Rolfsen, Knots and links, Mathematics Lecture Series 7, Publish or Perish, Inc., Berkeley, Calif., (1976). | MR: 1277811 | Zbl: 0339.55004

[15] Rudolph (L.).— Quasipositive plumbing (Constructions of quasipositive knots and links, V), Proc. A.M.S. 126, p. 257-267 (1998). | MR: 1452826 | Zbl: 0888.57010

[16] Światkowski (J.).— On the isotopy of Legendrian knots, Ann. Glob. Anal. Geom. 10, p. 195-207 (1992). | MR: 1186009 | Zbl: 0766.53030

[17] Torisu (I.).— Convex contact structures and fibered links in 3-manifolds, Int. Math. Res. Not. 9, p. 441-454 (2000). | MR: 1756943 | Zbl: 0978.53133

Cited by Sources: