Ensembles de Rosenthal et propriété de Radon-Nikodym relative
Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 18 (2009) no. 3, pp. 599-610.

Let G be a metrizable compact abelian group, Γ its dual group and let ΛΓ be a Rosenthal set. We show that L Λ (G,Y * )=C Λ (G,Y * ) whenever Y * is a Banach space with Radon-Nikodym property and C Λ (G,Y * ) is weakly sequentially complete. We deduce a condition implying that the product of two Rosenthal sets is still a Rosenthal set in product group. Then we introduce the relative Radon-Nikodym property RN-Λ, which generalizes the analytic Radon-Nikodym property. We prove that RN-Λ property for L 1 (G)/L Λ c 1 (G) implies that Λ is finite. This gives a new and easy proof that L 1 (𝕋)/H 1 (𝕋) does not possess the analytic Radon-Nikodym property.

Soient G un groupe abélien compact métrisable, Γ son groupe dual et ΛΓ un ensemble de Rosenthal. Nous montrons que L Λ (G,Y * )=C Λ (G,Y * ), lorsque Y * est un espace de Banach ayant la propriété de Radon-Nikodym et C Λ (G,Y * ) est faiblement séquentiellement complet. Nous en déduisons une condition suffisante pour que le produit de deux ensembles de Rosenthal en soit encore un pour le groupe produit. Ensuite nous introduisons la propriété de Radon-Nikodym relative RN-Λ, une généralisation de la propriété de Radon-Nikodym analytique. Nous montrons que si L 1 (G)/L Λ c 1 (G) a la propriété RN-Λ, alors Λ est fini. Cela nous permet de retrouver très simplement le fait que L 1 (𝕋)/H 1 (𝕋) n’a pas la propriété de Radon-Nikodym analytique

@article{AFST_2009_6_18_3_599_0,
     author = {Mohammad Daher},
     title = {Ensembles de {Rosenthal} et propri\'et\'e de {Radon-Nikodym} relative},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     pages = {599--610},
     publisher = {Universit\'e Paul Sabatier, Institut de Math\'ematiques},
     address = {Toulouse},
     volume = {6e s{\'e}rie, 18},
     number = {3},
     year = {2009},
     doi = {10.5802/afst.1216},
     mrnumber = {2582440},
     zbl = {1188.43005},
     language = {fr},
     url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1216/}
}
TY  - JOUR
AU  - Mohammad Daher
TI  - Ensembles de Rosenthal et propriété de Radon-Nikodym relative
JO  - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY  - 2009
SP  - 599
EP  - 610
VL  - 18
IS  - 3
PB  - Université Paul Sabatier, Institut de Mathématiques
PP  - Toulouse
UR  - https://afst.centre-mersenne.org/articles/10.5802/afst.1216/
DO  - 10.5802/afst.1216
LA  - fr
ID  - AFST_2009_6_18_3_599_0
ER  - 
%0 Journal Article
%A Mohammad Daher
%T Ensembles de Rosenthal et propriété de Radon-Nikodym relative
%J Annales de la Faculté des sciences de Toulouse : Mathématiques
%D 2009
%P 599-610
%V 18
%N 3
%I Université Paul Sabatier, Institut de Mathématiques
%C Toulouse
%U https://afst.centre-mersenne.org/articles/10.5802/afst.1216/
%R 10.5802/afst.1216
%G fr
%F AFST_2009_6_18_3_599_0
Mohammad Daher. Ensembles de Rosenthal et propriété de Radon-Nikodym relative. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 18 (2009) no. 3, pp. 599-610. doi : 10.5802/afst.1216. https://afst.centre-mersenne.org/articles/10.5802/afst.1216/

[BL] Benyamini (Y.), Lindenstrauss (J.).— Geometric nonlinear functional analysis, Vol. 1, American Mathematical Society Colloquium Publications 48, American Mathematical Society, Providence, RI (2000). | MR | Zbl

[BD] Bukhvalov (A. V.), Danilevich (A. A.).— Boundary properties of analytic and harmonic functions with values in Banach spaces, Mat. Zametki 31, p. 203–214 (1982), no. 2  ; English translation Math. Notes 31, p. 104–110 (1982). | MR | Zbl

[D] Daher (M.).— Translations mesurables et ensembles de Rosenthal, Annales de la Fac. de Toulouse, vol. XIV, n  I, p. 105–121 (2005). | Numdam | MR | Zbl

[DU] Diestel (J.), Uhl Jr (J. J.).— Vector measures, Math. Surveys N  15 (1977). | MR | Zbl

[Do] Dowling (P. N.).— Radon-Nikodym properties associated with subsets of countable discrete abelian groups, Trans. Amer. Math. Soc. 327, no. 2, p. 879-890 (1991). | MR | Zbl

[DP1] Dressler (R. E.), Pigno (L.).— Rosenthal sets and Riesz sets, Duke Math. J. 41, p. 675–677 (1974). | MR | Zbl

[DP2] Dressler (R. E.), Pigno (L.).— Une remarque sur les ensembles de Rosenthal et Riesz, C. R. Acad. Sci. Paris Sér. A-B 280, p. A1281–A1282 (1975). | MR | Zbl

[E] Edgar (G. A.).— Banach spaces with the analytic Radon-Nikodym property and compact abelian groups, Almost evrywhere convergence (Columbus, OH, 1988), Academic Press, Boston, MA, p. 195–213 (1989). | MR | Zbl

[G] Godefroy (G.).— On coanalytic families of sets in harmonic analysis, Illinois J. Math. 35, no. 2, p. 241–249 (1991). | MR | Zbl

[HR] Hewitt (E.), Ross (K. A.).— Abstract harmonic analysis II, Springer-Verlag, Berlin-Heidelberg-New York (1970). | MR | Zbl

[LLQR] Lefèvre (P.), Li (D.), Queffélec (H.), Rodríguez-Piazza (L.).— Some translation-invariant Banach function spaces which contain c 0 , Studia Math. 163, no. 2, p. 137–155 (2004). | MR | Zbl

[LR] Lefèvre (P.),Rodríguez-Piazza (L.).— Anal. 233, no. 2, p. 545–560 (2006). | MR | Zbl

[L1] Li (D.).— A class of Riesz sets, Proc. Amer. Math. Soc. 119, p. 889–892 (1993). | MR | Zbl

[L2] Li (D.).— On Hilbert sets and C Λ (G)-spaces with no subspace isomorphic to c 0 , Colloq. Math. 68, no. 1, p. 67–77 (1995). | MR | Zbl

[L3] Li (D.).— A remark about Λ(p)-sets and Rosenthal sets, Proc. Amer. Math. Soc. 126, no. 11, p. 3329–3333 (1998). | MR | Zbl

[LQR] Li (D.), Queffélec (H.), Rodríguez-Piazza (L.).— Some new thin sets of integers in harmonic analysis, J. Anal. Math. 86, p. 105–138 (2002). | MR | Zbl

[LP1] Lust-Piquard (F.).— Ensembles de Rosenthal et ensembles de Riesz, C. R. Acad. Sci. Paris 282, p. 833–835 (1976). | MR | Zbl

[LP2] Lust-Piquard (F.).— L’espace des fonctions presque-périodiques dont le spectre est contenu dans un ensemble compact dénombrable a la propriété de Schur, Colloq. Math. 41, p. 273–284 (1979). | MR | Zbl

[LP3] Lust-Piquard (F.).— Eléments ergodiques et totalement ergodiques dans L (G), Studia Math. 69, p. 191–225 (1981). | MR | Zbl

[LP4] Lust-Piquard (F.).— Bohr local properties of C Λ (T), Colloq. Math. 58, no. 1, p. 29–38 (1989). | MR | Zbl

[N] Neuwirth (S.).— Two random constructions inside lacunary sets, Ann. Inst. Fourier (Grenoble) 49, no. 6, p. 1853–1867 (1999). | Numdam | MR | Zbl

[OR] Odell (E.), Rosenthal (H. P.).— A double-dual characterization of separable Banach spaces containig 1 , Israel J. Math. 20, p. 375–384 (1975). | MR | Zbl

[P] Parthasarthy (T.).— Selection theorems and their applications, Lecture Notes in Math. Vol. 263, Springer-Verlag-Berlin New York (1972). | MR | Zbl

[R] Rosenthal (H. P.).— On trigonometric series associated with weak * -closed subspaces of continuous, J. Math. Mech. 17, p. 485–490 (1967). | MR | Zbl

[RS] Robdera (M.), Saab (P.).— Complete continuity properties of Banach spaces associated with subsets of a discrete abelian group, Glasgow Math. J. 43, p. 185-198 (2001). | MR | Zbl

[Ru] Rudin (W.).— Invariant means on L , Studia Math. 44, p. 219–227 (1972). | MR | Zbl

[W] Watbled (F.).— Rosenthal sets for Banach valued functions, Arch. Math. 66, p. 479–489 (1996). | MR | Zbl

Cited by Sources: