Intégration par rapport à une multimesure de Radon monotone, à valeurs convexes fermées bornées
Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 19 (2010) no. 1, pp. 71-93.

We introduce a notion of s-compact set-valued Radon measure, with closed convex bounded values, to extend and unify results obtained in the weakly compact case by A. Costé, R. Pallu De La Barrière, D. S. Thiam, K. Siggini. We present integration with respect to such set-valued Radon measures. We prove a one to one correspondence theorem, between s-compact monotones set-valued Radon measures, and s-compact monotones weak set-valued measures, and also an extension theorem. We define a space L (I) and obtain integrability criteria, densities of new type, simple techniques in the proofs.

Nous introduisons une notion de multimesure de Radon s-compacte, à valeurs convexes fermées bornées, afin de généraliser et d’unifier des résultats établis, pour des multimesures de Radon à valeurs faiblement compactes, par A. Costé, R. Pallu De La Barrière, K. Siggini, D. S. Thiam. Nous présentons l’intégration par rapport à de telles multimesures de Radon ; et démontrons un théorème de correspondance biunivoque, entre les multimesures faibles monotones s-compactes et les multimesures de Radon s-compactes monotones. Nous obtenons aussi un théorème de prolongeabilité, et définissons un espace L (I). Cela nous a permis d’obtenir des critéres d’intégrabilité, des densités d’un type nouveau, et des techniques de démonstrations plus simples.

DOI: 10.5802/afst.1236

Gabriel Birame Ndiaye 1; Doudou Sakhir Thiam 2

1 Département de Mathématiques-Informatique, Université Cheikh Anta Diop, Dakar, BP 5005, Sénégal
2 Président Université Dakar Bourguiba, Dakar, BP 15744, Sénégal
@article{AFST_2010_6_19_1_71_0,
     author = {Gabriel Birame Ndiaye and Doudou Sakhir Thiam},
     title = {Int\'egration par rapport \`a une multimesure de {Radon} monotone, \`a valeurs convexes ferm\'ees born\'ees},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     pages = {71--93},
     publisher = {Universit\'e Paul Sabatier, Institut de Math\'ematiques},
     address = {Toulouse},
     volume = {6e s{\'e}rie, 19},
     number = {1},
     year = {2010},
     doi = {10.5802/afst.1236},
     mrnumber = {2597781},
     zbl = {1190.28007},
     language = {fr},
     url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1236/}
}
TY  - JOUR
AU  - Gabriel Birame Ndiaye
AU  - Doudou Sakhir Thiam
TI  - Intégration par rapport à une multimesure de Radon monotone, à valeurs convexes fermées bornées
JO  - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY  - 2010
SP  - 71
EP  - 93
VL  - 19
IS  - 1
PB  - Université Paul Sabatier, Institut de Mathématiques
PP  - Toulouse
UR  - https://afst.centre-mersenne.org/articles/10.5802/afst.1236/
DO  - 10.5802/afst.1236
LA  - fr
ID  - AFST_2010_6_19_1_71_0
ER  - 
%0 Journal Article
%A Gabriel Birame Ndiaye
%A Doudou Sakhir Thiam
%T Intégration par rapport à une multimesure de Radon monotone, à valeurs convexes fermées bornées
%J Annales de la Faculté des sciences de Toulouse : Mathématiques
%D 2010
%P 71-93
%V 19
%N 1
%I Université Paul Sabatier, Institut de Mathématiques
%C Toulouse
%U https://afst.centre-mersenne.org/articles/10.5802/afst.1236/
%R 10.5802/afst.1236
%G fr
%F AFST_2010_6_19_1_71_0
Gabriel Birame Ndiaye; Doudou Sakhir Thiam. Intégration par rapport à une multimesure de Radon monotone, à valeurs convexes fermées bornées. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 19 (2010) no. 1, pp. 71-93. doi : 10.5802/afst.1236. https://afst.centre-mersenne.org/articles/10.5802/afst.1236/

[1] Castaing (C.), Valadier (M.).— Convex Analysis and Measurable Multifunctions, Lecture Notes in Mathematics, Springer-Verlag, 580, p. 37-50 (1977). | MR | Zbl

[2] Costé (A.).— Contribution à la théorie de l’intégration multivoque, thèse d’état, Paris 6, (1977).

[3] Dinculeanu (N.).— Vector Measures, Pergamon Press Veb-Berlin, Vol. 95, §. 8, p. 119 (1967). | MR | Zbl

[4] Godet-Thobie (C.).— Multimesures et multimesures de transition. thèse d’état, Montpellier, (1975).

[5] Ndiaye (G. B.).— Intégration par rapport à une multimesure s-compacte monotone, Journal des sciences - Dakar, Vol.  3 (2003), no. 1, p. 44-50. http ://www.ucadjds.org/

[6] Ndiaye (G. B.).— Prolongeabilité et richesse d’une multimesure s-compacte à valeurs convexes fermées bornées, conditions de compacitée, Journal des sciences - Dakar, Vol.  3 (2003), no. 2, p. 51-55. http ://www.ucadjds.org/

[7] Ndiaye (G. B.).— Multimesures et multimesures de Radon séquentiellement compactes, thèse d’état, u. c. a. d., Dakar, (2004).

[8] Ndiaye (G. B.).— L’intégration par rapport à une multimesure, monotone et s-compacte, à valeurs convexes fermées : African Diaspora Journal of Mathematics (ADJM), vol. 6, no 1, p. 13-30 (2008). | MR

[9] Ndiaye (G. B.).— M-mesurabilité, par rapport à une multimesure M, à valeurs convexes fermées, et densité univoque d’ une multimesure. À paraître dans Boletin de la Asociation Matematica Venezolana (BAMV).

[10] Pallu De La Barrière (R.).— Une alternative au théorème de Banach-Dieudonné, Seminaire d’analyse convexe, Montpellier, vol.  II, fascicule I, Exposé no. 1, I.1-I.19 (1981).

[11] Pallu De La Barrière (R.).— Intégration : Un nouvel itinéraire d’initiation à l’analyse mathématique, Ellipses, Paris (1997). | Zbl

[12] Siggini (K.).— Sur les proriétées de régularité des mesures vectorielles et multivoques sur des espaces topologiques généraux, thèse de doctorat, Paris 6, (1992).

[13] Thiam (D. S.).— Intégration dans les espaces ordonnés et intégration multivoque, thèse d’état, Paris 6, (1976).

[14] Thiam (D. S.).— Multimesures positives. C. R. Acad. Sci. Paris Sér. A-B 280, Ai, A993-A995 (1975). | MR | Zbl

[15] Thiam (D. S.).— Intégrale de Daniell à valeurs dans un semi-goupe ordonné. C. R. Acad. Sci. Paris Sér. A-B 281,no. 5-8, Aii, A215-A218 (1975). | MR | Zbl

[16] Thiam (D. S.).— Applications à l’intégration multivoque, de l’intégrale de Daniell à valeurs dans un semi-groupe ordonné. C. R. Acad. Sci. Paris Sér. A-B 281, no. 22, Ai, A955-A958 (1975). | MR | Zbl

[17] Thiam (D. S.).— Intégrales multivoques monotones. C. R. Acad. Sci. Paris Sér. A-B 282, no. 5, Ai A263-A265 (1976). | MR | Zbl

[18] Thiam (D. S.).— Applications à l’intégration multivoque, de l’intégrale de Daniell à valeurs dans un monoïde. Intégration vectorielle et multivoque (Colloq. Univ. Caen, 1975), Expo. no. 7, 35 pp. Dép. Math., U. E. R. Sci., Univ. Caen, (1975). | MR | Zbl

[19] Thomas (E.).— L’intégration par rapport à une mesure de Radon vectorielle Ann. Inst. Fourrier , vol. 20, p. 55-191 (1970). | Numdam | MR | Zbl

Cited by Sources: