We prove that the standard action of the mapping class group of a surface of sufficiently large genus on the unit tangent bundle is not homotopic to any smooth action.
On montre que l’action standard du groupe modulaire d’une surface de genre assez grand sur le fibré unitaire tangent n’est pas homotopique à une action lisse.
@article{AFST_2010_6_19_3-4_589_0, author = {J. Souto}, title = {A remark on the action of the mapping class group on the unit tangent bundle}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {589--601}, publisher = {Universit\'e Paul Sabatier, Institut de Math\'ematiques}, address = {Toulouse}, volume = {Ser. 6, 19}, number = {3-4}, year = {2010}, doi = {10.5802/afst.1258}, mrnumber = {2790810}, zbl = {1236.57027}, language = {en}, url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1258/} }
TY - JOUR AU - J. Souto TI - A remark on the action of the mapping class group on the unit tangent bundle JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2010 SP - 589 EP - 601 VL - 19 IS - 3-4 PB - Université Paul Sabatier, Institut de Mathématiques PP - Toulouse UR - https://afst.centre-mersenne.org/articles/10.5802/afst.1258/ DO - 10.5802/afst.1258 LA - en ID - AFST_2010_6_19_3-4_589_0 ER -
%0 Journal Article %A J. Souto %T A remark on the action of the mapping class group on the unit tangent bundle %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2010 %P 589-601 %V 19 %N 3-4 %I Université Paul Sabatier, Institut de Mathématiques %C Toulouse %U https://afst.centre-mersenne.org/articles/10.5802/afst.1258/ %R 10.5802/afst.1258 %G en %F AFST_2010_6_19_3-4_589_0
J. Souto. A remark on the action of the mapping class group on the unit tangent bundle. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 19 (2010) no. 3-4, pp. 589-601. doi : 10.5802/afst.1258. https://afst.centre-mersenne.org/articles/10.5802/afst.1258/
[1] Bestvina (M.), Church (T.) and Souto (J.).— Some groups of mapping classes not realized by diffeomorphisms, preprint (2009).
[2] Bing (R.).— Inequivalent families of periodic homeomorphisms of , Ann. of Math. (2) 80 (1964). | MR | Zbl
[3] Casson (A.) and Bleiler (S.).— Automorphisms of surfaces after Nielsen and Thurston, London Mathematical Society Student Texts, 9. Cambridge University Press, 1988. | MR | Zbl
[4] Deroin (B.), Kleptsyn (V.) and Navas (A.).— Sur la dynamique unidimensionnelle en régularité intermédiaire, Acta Math. 199 (2007), no. 2. | MR | Zbl
[5] Farb (B.) and Margait (D.).— A primer on mapping class groups, to be published by Princeton University Press.
[6] Farb (B.) and Franks (J.).— Groups of homeomorphisms of one-manifolds, I: Nonlinear group actions, preprint (2001).
[7] Franks (J.) and Handel (M.).— Global fixed points for centralizers and Morita’s Theorem, Geom. Topol. 13 (2009). | MR | Zbl
[8] Korkmaz (M.).— Low-dimensional homology groups of mapping class groups: a survey, Turkish J. Math. 26 (2002). | MR | Zbl
[9] Kuusalo (T.).— Boundary mappings of geometric isomorphisms of Fuchsian groups, Ann. Acad. Sci. Fenn. Ser. A I No. 545 (1973). | MR | Zbl
[10] Marković (V.).— Realization of the mapping class group by homeomorphisms, Invent. Math. 168 (2007). | MR | Zbl
[11] Meeks (W.) and Scott (P.).— Finite group actions on -manifolds, Invent. Math. 86 (1986). | MR | Zbl
[12] Milnor (J.) and Stasheff (J.).— Characteristic classes, Annals of Mathematics Studies, No. 76. Princeton University Press, (1974). | MR | Zbl
[13] Morita (S.).— Characteristic classes of surface bundles, Invent. Math. 90 (1987). | MR | Zbl
[14] Neumann (W.) and Raymond (F.).— Seifert manifolds, plumbing, -invariant and orientation reversing maps, in Algebraic and geometric topology, Lecture Notes in Math., 664, Springer 1978. | MR | Zbl
[15] Parwani (K.).— actions on the mapping class groups on the circle, Algebr. Geom. Topol. 8 (2008). | MR | Zbl
[16] Powell (J.).— Two theorems on the mapping class group of a surface, Proc. Amer. Math. Soc. 68 (1978). | MR | Zbl
[17] Seifert (H.).— Topologie dreidimensionalen gefaserter Räume, Acta Math. 60 (1933). | Zbl
[18] Sullivan (D.).— Hyperbolic geometry and homeomorphisms, in Proc. Georgia Topology Conf. 1977, Academic Press, 1979. | MR | Zbl
[19] Thurston (W.).— A generalization of the Reeb stability theorem, Topology 13 (1974) | MR | Zbl
[20] Waldhausen (F.).— On irreducible -manifolds which are sufficiently large, Ann. of Math. (2) 87 (1968). | MR | Zbl
Cited by Sources: