An -ring is an SV -ring if for every minimal prime -ideal of , is a valuation domain. A topological space is an SV space if is an SV -ring. SV -rings and spaces were introduced in [HW1], [HW2]. Since then a number of articles on SV -rings and spaces and on related -rings and spaces have appeared. This article surveys what is known about these -rings and spaces and introduces a number of new results that help to clarify the relationship between SV -rings and spaces and related -rings and spaces.
@article{AFST_2010_6_19_S1_111_0, author = {Suzanne Larson}, title = {SV and related $f$-rings and spaces}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {111--141}, publisher = {Universit\'e Paul Sabatier, Institut de Math\'ematiques}, address = {Toulouse}, volume = {Ser. 6, 19}, number = {S1}, year = {2010}, doi = {10.5802/afst.1278}, mrnumber = {2675724}, language = {en}, url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1278/} }
TY - JOUR AU - Suzanne Larson TI - SV and related $f$-rings and spaces JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2010 SP - 111 EP - 141 VL - 19 IS - S1 PB - Université Paul Sabatier, Institut de Mathématiques PP - Toulouse UR - https://afst.centre-mersenne.org/articles/10.5802/afst.1278/ DO - 10.5802/afst.1278 LA - en ID - AFST_2010_6_19_S1_111_0 ER -
%0 Journal Article %A Suzanne Larson %T SV and related $f$-rings and spaces %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2010 %P 111-141 %V 19 %N S1 %I Université Paul Sabatier, Institut de Mathématiques %C Toulouse %U https://afst.centre-mersenne.org/articles/10.5802/afst.1278/ %R 10.5802/afst.1278 %G en %F AFST_2010_6_19_S1_111_0
Suzanne Larson. SV and related $f$-rings and spaces. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 19 (2010) no. S1, pp. 111-141. doi : 10.5802/afst.1278. https://afst.centre-mersenne.org/articles/10.5802/afst.1278/
[A] Ali Rezaei Aliabad, Ahvaz. Pasting topological spaces at one point. Czech. Math. J. 2006, 56 (131), 1193 - 1206. | MR | Zbl
[BH] Banerjee, B; Henriksen, M. Ways in which mod a prime ideal can be a valuation domain; something old and something new. Positivity (Trends in Mathematics), Birkhäuser Basel: Switzerland, 2007, 1- 25. | MR | Zbl
[BKW] Bigard, A.; Keimel, K.; Wolfenstein, S. Groupes et Anneaux Réticulés, Lecture Notes in Mathematics 608; Springer-Verlag: New York, 1977. | MR | Zbl
[CD] Cherlin, G.; Dickmann, M. Real-closed rings I. Fund. Math. 1986, 126, 147-183. | MR | Zbl
[D] Darnel, Michael. Theory of Lattice-Ordered Groups; Marcel Dekker, Inc: New York, 1995. | MR | Zbl
[DHH] Dashiell, F.; Hager, A.; Henriksen, M. Order-Cauchy completions of rings and vector lattices of continuous functions. Canad. J. Math. 1980, 32 (3), 657-685. | MR | Zbl
[GJ] Gillman, L.; Jerison, M. Rings of Continuous Functions; D. Van Nostrand Publishing: New York, 1960. | MR | Zbl
[HL] Henriksen, M.; Larson, S. Semiprime -rings that are subdirect products of valuation domains. Ordered Algebraic Structures (Gainesville, FL 1991), Kluwer Acad. Publishing: Dordrecht, 1993, 159-168. | MR | Zbl
[HLMW] Henriksen, M.; Larson, S.; Martinez, J.; Woods, R. G. Lattice-ordered algebras that are subdirect products of valuation domains. Trans. Amer. Math. Soc. 1994, 345, 193-221. | MR | Zbl
[HW1] Henriksen, M.; Wilson, R. When is a valuation ring for every prime ideal ? Topology and Applications 1992, 44, 175-180. | MR | Zbl
[HW2] Henriksen, M.; Wilson, R. Almost discrete SV-spaces. Topology and Applications 1992, 46, 89-97. | MR | Zbl
[K] Kuratowski, K. Topology, vol. 1; Academic Press; New York, 1966. | MR | Zbl
[L1] Larson, S. Convexity conditions on -rings. Canad. J. Math. 1986, 38, 48-64. | MR | Zbl
[L2] Larson, S. -Rings in which every maximal ideal contains finitely many minimal prime ideals. Comm. in Algebra 1997, 25 (12), 3859-3888. | MR | Zbl
[L3] Larson, S. Constructing rings of continuous functions in which there are many maximal ideals with nontrivial rank. Comm. in Algebra 2003, 31 (5), 2183-2206. | MR | Zbl
[L4] Larson, S. Rings of continuous functions on spaces of finite rank and the SV property. Comm. in Algebra 2007, 35 (8), 2611 - 2627. | MR | Zbl
[L5] Larson, S. Images and open subspaces of SV spaces. Comm. in Algebra, 2008, 36, 1 - 13. | MR | Zbl
[L6] Larson, S. Functions that map cozerosets to cozerosets. Commentationes Mathematicae Universitatis Carolinae 2007, 48 (3), 507-521. | MR
[MW] Martinez, J; Woodward, S. Bezout and Prüfer -Rings. Comm. in Algebra 1992, 20, 2975 - 2989. | MR | Zbl
[S1] Schwartz, N. The Basic Theory of Real Closed Spaces, AMS Memoirs 397; Amer. Math. Soc.: Providence, RI, 1989. | MR | Zbl
[S2] Schwartz, N. Rings of continuous functions as real closed rings. Ordered Algebraic Structures (Curaçao 1995), Kluwer Acad. Publishing: Dordrecht, 1997, 277-313. | MR | Zbl
Cited by Sources: