Henriksen and Isbell showed in 1962 that some commutative rings admit total orderings that violate equational laws (in the language of lattice-ordered rings) that are satisfied by all totally-ordered fields. In this paper, we review the work of Henriksen and Isbell on this topic, construct and classify some examples that illustrate this phenomenon using the valuation theory of Hion (in the process, answering a question posed in [E]) and, finally, prove that a base for the equational theory of totally-ordered fields consists of the -ring identities of the form , , where is not a subset of any positive cone.
Henriksen et Isbell ont montré en 1962 que certains anneaux commutatifs admettent des ordres totaux qui ne vérifient pas les lois equationnelles (dans le language des anneaux réticulés) vérifiées par tous les corps totalement ordonnés. Dans cet article, nous revisitons le travail de Henriksen et Isbell sur ce sujet. En suite nous construisons et classifions quelques exemples qui testifient à ce phenomène utilisant la théorie des valuations de Hion (ce que nous permet, en particulier, de répondre á la question posée dans [E]). Finalement, nous montrons qu’une base pour la théorie equationnelle des corps totalement ordonnés consiste des identités dans les -anneaux de la forme , , où n’est contenu dans aucun cône positif.
@article{AFST_2010_6_19_S1_143_0, author = {James J. Madden}, title = {On $f$-rings that are not formally real}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {143--157}, publisher = {Universit\'e Paul Sabatier, Institut de Math\'ematiques}, address = {Toulouse}, volume = {Ser. 6, 19}, number = {S1}, year = {2010}, doi = {10.5802/afst.1279}, mrnumber = {2675725}, zbl = {1213.06013}, language = {en}, url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1279/} }
TY - JOUR AU - James J. Madden TI - On $f$-rings that are not formally real JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2010 SP - 143 EP - 157 VL - 19 IS - S1 PB - Université Paul Sabatier, Institut de Mathématiques PP - Toulouse UR - https://afst.centre-mersenne.org/articles/10.5802/afst.1279/ DO - 10.5802/afst.1279 LA - en ID - AFST_2010_6_19_S1_143_0 ER -
%0 Journal Article %A James J. Madden %T On $f$-rings that are not formally real %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2010 %P 143-157 %V 19 %N S1 %I Université Paul Sabatier, Institut de Mathématiques %C Toulouse %U https://afst.centre-mersenne.org/articles/10.5802/afst.1279/ %R 10.5802/afst.1279 %G en %F AFST_2010_6_19_S1_143_0
James J. Madden. On $f$-rings that are not formally real. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 19 (2010) no. S1, pp. 143-157. doi : 10.5802/afst.1279. https://afst.centre-mersenne.org/articles/10.5802/afst.1279/
[AO] D. F. Anderson and J. Ohm, Valuations and semi-valuations of graded domains, Math. Ann. 256(1981), 145–156. | MR | Zbl
[BKW] Bigard, Keimel and Wolfenstein, Groupes et anneaux reticulés, Lecture Notes in Mathematics 608. Springer-Verlag, Berlin, 1971. | Zbl
[BP] G. Birkhoff and R. Pierce, Lattice ordered rings, Anais Acad. Bras. Ci. 28 (1956), 41–69. | MR | Zbl
[B] G. Brumfiel, Partially Ordered Rings and Semi-Algebraic Geometry. London Math. Soc. Lecture Note Series 37, Cambridge, 1979. | MR | Zbl
[DM] C. N. Delzell and J. Madden, Lattice-ordered rings and semialgebraic geometry: I, Real analytic and Algebraic Geometry. Proc. Intenat. Conf., Trento, Italy, September 21–25, 1992, F. Broglia , M. Galbiati, A. Tognoli, eds., Walter de Gruyter (1995), 103–29. | MR | Zbl
[E] K. Evans, M. Konikoff, R. Mathis, J. Madden and G. Whipple, Totally ordered commutative monoids, Semigroup Forum 62 (2001), 249–278. | MR | Zbl
[HI] M. Henriksen and J. Isbell, Lattice ordered rings and function rings, Pacific J. Math. 12 (1962), 533–66. | MR | Zbl
[Hi] Ya. V. Hion, Rings normed by the aid of semigroups. Izv. Akad. Nauk SSSR. Ser. Mat. 21(1957), 311–328. (Russian) MR 19 (1958), p. 530. | MR
[I] J. Isbell, Notes on ordered rings, Algeb ra Universalis 1 (1972), 393–399. | MR | Zbl
[M] J. Madden, Pierce-Birkhoff rings. Arch. der Math. 53 (1989), 565–70. | MR | Zbl
[SM] N. Schwartz and J. Madden, Semi-algebraic Function Rings and Reflectors of Partially Ordered Rings. Lecture Notes in Mathematics, 1712. Springer-Verlag, Berlin, 1999. | MR | Zbl
[S] B. Sturmfels, Gröbner bases and convex polytopes, AMS, Providence, RI, 1996. | MR | Zbl
Cited by Sources: