SV-Rings and SV-Porings
Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 19 (2010) no. S1, pp. 159-202.

SV-rings are commutative rings whose factor rings modulo prime ideals are valuation rings. SV-rings occur most naturally in connection with partially ordered rings (= porings) and have been studied only in this context so far. The present note first develops the theory of SV-rings systematically, without assuming the presence of a partial order. Particular attention is paid to the question of axiomatizability (in the sense of model theory). Partially ordered SV-rings (SV-porings) are introduced, and some elementary properties are exhibited. Finally, SV-rings are used to study convex subrings and convex extensions of porings, in particular of real closed rings.

Les SV-anneaux sont les anneaux commutatifs dont les quotients modulo leurs idéaux premiers sont des anneaux de valuation. Les SV-anneaux apparaissent de la façon la plus naturelle en connexion avec les anneaux partiellement ordonnés (= porings) ; ils ont été étudiés uniquement dans ce contexte jusqu’à présent. Dans le présent article, pour la première fois nous developpons la théorie des SV-anneaux d’une manière systématique, sans supposer la présence d’un ordre partiel. Une attention particulière est consacrée à la question d’axiomatisabilité (au sens de la théorie des modèles). Nous introduisons les SV-anneaux partiellement ordonnés (SV-porings) et nous démontrons quelques propriétés élémentaires de ces anneaux. Finalement, SV-anneaux sont utilisés pour étudier les sous-anneaux convexes et les extensions convexes des anneaux partiellement ordonnés et, en particulier, des anneaux réels clos.

DOI: 10.5802/afst.1280

Niels Schwartz 1

1 Fakultät für Informatik und Mathematik, Universität Passau, Postfach 2540, 94030 Passau, Germany
@article{AFST_2010_6_19_S1_159_0,
     author = {Niels Schwartz},
     title = {$SV${-Rings} and $SV${-Porings}},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     pages = {159--202},
     publisher = {Universit\'e Paul Sabatier, Institut de Math\'ematiques},
     address = {Toulouse},
     volume = {Ser. 6, 19},
     number = {S1},
     year = {2010},
     doi = {10.5802/afst.1280},
     mrnumber = {2675726},
     language = {en},
     url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1280/}
}
TY  - JOUR
AU  - Niels Schwartz
TI  - $SV$-Rings and $SV$-Porings
JO  - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY  - 2010
SP  - 159
EP  - 202
VL  - 19
IS  - S1
PB  - Université Paul Sabatier, Institut de Mathématiques
PP  - Toulouse
UR  - https://afst.centre-mersenne.org/articles/10.5802/afst.1280/
DO  - 10.5802/afst.1280
LA  - en
ID  - AFST_2010_6_19_S1_159_0
ER  - 
%0 Journal Article
%A Niels Schwartz
%T $SV$-Rings and $SV$-Porings
%J Annales de la Faculté des sciences de Toulouse : Mathématiques
%D 2010
%P 159-202
%V 19
%N S1
%I Université Paul Sabatier, Institut de Mathématiques
%C Toulouse
%U https://afst.centre-mersenne.org/articles/10.5802/afst.1280/
%R 10.5802/afst.1280
%G en
%F AFST_2010_6_19_S1_159_0
Niels Schwartz. $SV$-Rings and $SV$-Porings. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 19 (2010) no. S1, pp. 159-202. doi : 10.5802/afst.1280. https://afst.centre-mersenne.org/articles/10.5802/afst.1280/

[1] Brumfiel (G.W.).— Partially Ordered Rings and Semi-Algebraic Geometry. London Math. Soc. Lecture Note Series, vol. 37, Camb. Univ. Press, Cambridge (1979).

[2] Carral (M.), Coste (M.).— Normal spectral spaces and their dimensions. J. Pure Applied Alg. 30, p. 227-235 (1983).

[3] Chang (C.C.), Keisler (H.J.).— Model Theory. 2nd edition. North Holland, Amsterdam (1977).

[4] Cherlin (G.), Dickmann (M.A.).— Real closed rings II. Model theory. Annals Pure Applied Logic 25, p. 213-231 (1983).

[5] Cherlin (G.), Dickmann (M.A.).— Real closed rings I. Residue rings of rings of continuous functions. Fund. Math. 126, p. 147-183 (1986).

[6] Delfs (H.), Knebusch (M.).— Semialgebraic Topology over a Real Closed Field II – Basic Theory of Semialgebraic Spaces. Math. Z. 178, p. 175-213 (1981).

[7] Engler (A.J.), Prestel (A.).— Valued Fields. Springer-Verlag, Berlin Heidelberg (2005).

[8] Gillman (L.), Jerison (M.).— Rings of Continuous Functions. Graduate Texts in Maths., Vol. 43, Springer, Berlin (1976).

[9] Gilmer (R.).— Multiplicative Ideal Theory. Marcel Dekker, New York (1972).

[10] Glaz (S.).— Commutative Coherent Rings. Lecture Notes in Maths., vol. 1371, Springer-Verlag, Berlin (1989).

[11] Henriksen (M.), Isbell (J.R.), Johnson (D.G.).— Residue class fields of latticeordered algebras. Fund. Math. 50, p. 73-94 (1961).

[12] Henriksen (M.), Jerison (M.).— The space of minimal prime ideals of a commutative ring. Trans. AMS 115, p. 110-130 (1965).

[13] Henriksen (M.), Larson (S.).— Semiprime f-rings that are subdirect products of valuation domains. In: Ordered Algebraic Structures (Eds. J. Martinez, W.C. Holland), Kluwer, Dordrecht, p. 159-168 (1993).

[14] Henriksen (M.), Larson (S.), Martinez (J.), Woods (G.R.).— Lattice-ordered algebras that are subdirect products of valuation domains. Trans. Amer. Math. Soc. 345, p. 193-221 (1994).

[15] Henriksen (M.), Wilson.— When is C(X)/P a valuation ring for every prime ideal P? Topology and its Applications 44, p. 175-180 (1992).

[16] Henriksen (M.), Wilson.— Almost discrete SV-spaces. Topology and its Applications 46, p. 89-97 (1992).

[17] Hochster (M.).— Prime ideal structure in commutative rings. Trans Amer. Math. Soc. 142, p. 43-60 (1969).

[18] Hodges (W.).— Model Theory. Encyclopedia of Mathematics and its Applications, vol. 42, Cambridge Univ. Press, Cambridge (1993).

[19] Johnstone (P.).— Stone Spaces. Cambridge Univ. Press, Cambridge (1982).

[20] Knebusch (M.), Scheiderer (C.).— Einführung in die reelle Algebra. Vieweg, Braunschweig (1989).

[21] Knebusch (M.), Zhang (D.).— Manis valuations and Prüferextensions I – A new chapter in commutative algebra. Lecture Notes in Math., vol 1791, Springer, Berlin (2002).

[22] Knebusch (M.), Zhang (D.).— Convexity, Valuations and PrüferExtensions in Real Algebra. Documenta Math. 10, p. 1-109 (2005).

[23] Larson (S.).— Convexity conditions on f-rings. Can. J. Math. 38, p. 48-64 (1986).

[24] Larson (S.).— Constructing rings of continuous functions in which there are many maximal ideals with nontrivial rank. Comm. Alg. 31, p. 2183-2206 (2003).

[25] Larson (S.).— Images and Open Subspaces of SV-Spaces. Preprint 2007.

[26] Matsumura (H.).— Commutative Algebra. 2nd Ed. Benjamin/Cummings, Reading, Massachusetts 1980.

[27] Prestel (A.), Schwartz (N.).— Model theory of real closed rings. In: Fields Institute Communications, vol. 32 (Eds. F.-V. Kuhlmann et al.), American Mathematical Society, Providence, p. 261-290 ( 2002).

[28] Sch¨ulting (H.W.).— On real places of a field and their holomorphy ring. Comm. Alg. 10, p. 1239-1284 (1982).

[29] Schwartz (N.).— Real Closed Rings. In: Algebra and Order (Ed. S. Wolfenstein), Heldermann Verlag, Berlin, p. 175-194 (1986).

[30] Schwartz (N.).— The basic theory of real closed spaces. Memoirs Amer. Math. Soc. No. 397, Amer. Math. Soc., Providence (1989).

[31] Schwartz (N.).— Eine universelle Eigenschaft reell abgeschlossener Räume. Comm. Alg. 18, p. 755-774 (1990).

[32] Schwartz (N.).— Rings of continuous functions as real closed rings. In: Ordered Algebraic Structures (Eds. W.C. Holland, J. Martinez), Kluwer, Dordrecht, p. 277-313 (1997).

[33] Schwartz (N.).— Epimorphic extensions and Prüfer extensions of partially ordered rings. Manuscripta mathematica 102, p. 347-381 (2000).

[34] Schwartz (N.).— Convex subrings of partially ordered rings. To appear: Math. Nachr.

[35] Schwartz (N.).— Real closed valuation rings. Comm. in Alg. 37, p. 3796-3814 (2009).

[36] Schwartz (N.), Madden (J.J.).— Semi-algebraic Function Rings and Reflectors of Partially Ordered Rings. Lecture Notes in Mathematics, Vol. 1712, Springer-Verlag, Berlin (1999).

[37] Schwartz (N.), Tressl (M.).— Elementary properties of minimal and maximal points in Zariski spectra., Journal of Algebra 323, p. 698-728 (2010).

[38] Walker (R.C.).— The Stone-Cech Compactification. Springer, Berlin (1974).

Cited by Sources: