This article presents a brief survey of the work done on rings generated by their units.
Cet article est un bref survey de l’étude des anneaux engendrés par leurs unités.
@article{AFST_2010_6_19_S1_203_0, author = {Ashish K. Srivastava}, title = {A {Survey} of {Rings} {Generated} by {Units}}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {203--213}, publisher = {Universit\'e Paul Sabatier, Institut de Math\'ematiques}, address = {Toulouse}, volume = {Ser. 6, 19}, number = {S1}, year = {2010}, doi = {10.5802/afst.1281}, mrnumber = {2675727}, zbl = {1211.16010}, language = {en}, url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1281/} }
TY - JOUR AU - Ashish K. Srivastava TI - A Survey of Rings Generated by Units JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2010 SP - 203 EP - 213 VL - 19 IS - S1 PB - Université Paul Sabatier, Institut de Mathématiques PP - Toulouse UR - https://afst.centre-mersenne.org/articles/10.5802/afst.1281/ DO - 10.5802/afst.1281 LA - en ID - AFST_2010_6_19_S1_203_0 ER -
%0 Journal Article %A Ashish K. Srivastava %T A Survey of Rings Generated by Units %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2010 %P 203-213 %V 19 %N S1 %I Université Paul Sabatier, Institut de Mathématiques %C Toulouse %U https://afst.centre-mersenne.org/articles/10.5802/afst.1281/ %R 10.5802/afst.1281 %G en %F AFST_2010_6_19_S1_203_0
Ashish K. Srivastava. A Survey of Rings Generated by Units. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 19 (2010) no. S1, pp. 203-213. doi : 10.5802/afst.1281. https://afst.centre-mersenne.org/articles/10.5802/afst.1281/
[1] N. Ashrafi, P. Vámos, On the unit sum number of some rings, Quart. J. Math. 56 (2005), 1-12. | MR | Zbl
[2] V. P. Camillo, H. P. Yu, Exchange rings, units and idempotents, Comm. Alg. 22, 12 (1994), 4737-4749. | MR | Zbl
[3] A. W. Chatters, S. M. Ginn, Rings generated by their regular elements, Glasgow Math. J. 25 (1984), 1-5. | MR | Zbl
[4] H. Chen, Exchange rings with artinian primitive factors, Algebras and Representation Theory, Vol. 2, No. 2 (1999), 201-207. | MR | Zbl
[5] G. Ehrlich, Unit-regular rings, Portugal Math. 27 (1968), 209-212. | MR | Zbl
[6] J. W. Fisher, R. L. Snider, Rings generated by their units, J. Algebra 42 (1976), 363-368. | MR | Zbl
[7] K. R. Goodearl, von-Neumann Regular Rings, Krieger Publishing Company, Malabar, Florida, 1991. | MR | Zbl
[8] B. Goldsmith, S. Pabst and A. Scott, Unit sum numbers of rings and modules, Quart. J. Math. Oxford (2), 49 (1998), 331-344. | MR | Zbl
[9] D. Handelman, Perspectivity and cancellation in regular rings, J. Algebra, 48 (1977), 1-16. | MR | Zbl
[10] M. Henriksen, On a class of regular rings that are elementary divisor rings. Arch. Math. (Basel) 24 (1973), 133Ð141. | MR | Zbl
[11] M. Henriksen, Two classes of rings generated by their units, J. Algebra 31 (1974), 182-193. | MR | Zbl
[12] D. Khurana and A. K. Srivastava, Right Self-injective Rings in Which Each Element is Sum of Two Units, Journal of Algebra and its Applications, Vol. 6, No. 2 (2007), 281-286. | MR | Zbl
[13] D. Khurana and A. K. Srivastava, Unit Sum Numbers of Right Self-injective Rings, Bulletin of Australian Math. Soc., Vol. 75, No. 3 (2007), 355-360. | MR | Zbl
[14] S. Lang, Algebraic Number Theory, Graduate Texts in Mathematics, Springer, 1986. | MR | Zbl
[15] T. Y. Lam, A First Course in Noncommutative Rings, Graduate Texts in Mathematics, Springer, 1990. | MR | Zbl
[16] T. Y. Lam, Lectures on Modules and Rings, Graduate Texts in Mathematics, Springer, 1998. | MR | Zbl
[17] C. Meehan, Unit sum numbers of abelian groups and modules, Ph.D. thesis, Dublin Institute of Technology, 2001.
[18] R. Raphael, Rings which are generated by their units, J. Algebra 28 (1974), 199-205. | MR | Zbl
[19] J. C. Robson, Sums of two regular elements, Glasgow Math. J. 25 (1984), 7-11. | MR | Zbl
[20] L. A. Skornyakov, Complemented Modular Lattices and Regular Rings, Oliver & Boyd, Edinburgh, 1964. | MR | Zbl
[21] Y. Utumi, On Continuous Regular Rings and Semisimple Self-injective Rings, Canad. J. Math. 12 (1960), 597-605. | MR | Zbl
[22] P. Vámos, 2-Good Rings, The Quart. J. Math. 56 (2005), 417-430. | MR | Zbl
[23] Z. Wang, J. L. Chen, To appear in the Canad. Math. Bull. | MR
[24] K. G. Wolfson, An ideal theoretic characterization of the ring of all linear transformations, Amer. J. Math. 75 (1953), 358-386. | MR | Zbl
[25] D. Zelinsky, Every Linear Transformation is Sum of Nonsingular Ones, Proc. Amer. Math. Soc. 5 (1954), 627-630. | MR | Zbl
Cited by Sources: