An -algebra approach to Artin’s solution of Hilbert’s Seventeenth Problem
Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 19 (2010) no. S1, pp. 215-220.

Using lattice-ordered algebras it is shown that a totally ordered field which has a unique total order and is dense in its real closure has the property that each of its positive semidefinite rational functions is a sum of squares.

En utilisant les algèbres réticulées, on montre qu’un corps totalement ordonné qui a un unique ordre total et qui est dense dans sa clôture réelle a la propriété que chacune des ses fonctions rationnelles positives semi-définies est une somme de carrés.

DOI: 10.5802/afst.1282

Stuart A. Steinberg 1

1 The University of Toledo Toledo, Ohio, U.S.A.
@article{AFST_2010_6_19_S1_215_0,
     author = {Stuart A. Steinberg},
     title = {An $\ell $-algebra approach to {Artin{\textquoteright}s} solution of {Hilbert{\textquoteright}s} {Seventeenth} {Problem}},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     pages = {215--220},
     publisher = {Universit\'e Paul Sabatier, Institut de Math\'ematiques},
     address = {Toulouse},
     volume = {Ser. 6, 19},
     number = {S1},
     year = {2010},
     doi = {10.5802/afst.1282},
     mrnumber = {2675728},
     language = {en},
     url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1282/}
}
TY  - JOUR
AU  - Stuart A. Steinberg
TI  - An $\ell $-algebra approach to Artin’s solution of Hilbert’s Seventeenth Problem
JO  - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY  - 2010
SP  - 215
EP  - 220
VL  - 19
IS  - S1
PB  - Université Paul Sabatier, Institut de Mathématiques
PP  - Toulouse
UR  - https://afst.centre-mersenne.org/articles/10.5802/afst.1282/
DO  - 10.5802/afst.1282
LA  - en
ID  - AFST_2010_6_19_S1_215_0
ER  - 
%0 Journal Article
%A Stuart A. Steinberg
%T An $\ell $-algebra approach to Artin’s solution of Hilbert’s Seventeenth Problem
%J Annales de la Faculté des sciences de Toulouse : Mathématiques
%D 2010
%P 215-220
%V 19
%N S1
%I Université Paul Sabatier, Institut de Mathématiques
%C Toulouse
%U https://afst.centre-mersenne.org/articles/10.5802/afst.1282/
%R 10.5802/afst.1282
%G en
%F AFST_2010_6_19_S1_215_0
Stuart A. Steinberg. An $\ell $-algebra approach to Artin’s solution of Hilbert’s Seventeenth Problem. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 19 (2010) no. S1, pp. 215-220. doi : 10.5802/afst.1282. https://afst.centre-mersenne.org/articles/10.5802/afst.1282/

[1] E. Artin, Über die Zerlegung definiter Funktionen in Quadrate, Hamb. Abh., 5 (1927), 100–115.

[2] P. M. Cohn, Universal algebra, Revised edition, Reidel, Dordrecht, 1981. | MR | Zbl

[3] P. Erdos, L. Gillman and M. Henriksen, An isomorphism theorem for real-closed fields, Ann. of Math., 61 (1955), 542–554. | MR | Zbl

[4] L. Gillman and M. Jerison, Rings of continuous functions, Van Nostrand, Princeton, 1960. | MR | Zbl

[5] L. Henkin, Sums of squares, in Summaries of Talks, Summer Institute of Symbolic Logic in 1957 at Cornell University, Institute for Defense Analyses, Princeton, 1960, 284–291. | Zbl

[6] M. Henricksen and J. R. Isbell, Lattice-ordered rings and function rings, Pacific J. Math., 12 (1962), 533–565. | MR | Zbl

[7] N. Jacobson, Lectures in abstract algebra, Volume III - Theory of fields and Galois Theory, Van Nostrand, Princeton, 1964. | MR | Zbl

[8] N. Jacobson, Basic algebra II, Freeman, San Francisco, 1980. | MR | Zbl

[9] S. Lang, The theory of real places, Ann. Math. 57 (1953), 378–391. | MR | Zbl

[10] S. Lang and J. T. Tate, The collected papers of Emil Artin, Addison-Wesley, Reading, 1965. | MR | Zbl

[11] K. McKenna, New facts about Hilbert’s seventeenth problem, Lecture Notes in Mathematics 498, Model theory and algebra, A memorial tribute to Abraham Robinson, 1975, 220–230. | MR | Zbl

[12] A. Pfister, Hilbert’s seventeenth problem and related problems on definite forms, Mathematical developments arising from Hilbert problems, Proceedings of symposia in pure mathematics 28, part 2, Amer. Math. Soc., Providence, 1976, 483–489. | MR | Zbl

[13] A. Prestel and C. N. Delzell, Positive polynomials, Springer, Berlin, 2001. | MR | Zbl

[14] E. C. Weinberg, Lectures on ordered groups and rings, University of Illinois, Urbana, 1968.

[15] E. C. Weinberg, University of Illinois seminar, 1971.

Cited by Sources: