We provide an effective uniform upper bound for the number of zeros of the first non-vanishing Melnikov function of a polynomial perturbations of a planar polynomial Hamiltonian vector field. The bound depends on degrees of the field and of the perturbation, and on the order of the Melnikov function. The generic case was considered by Binyamini, Novikov and Yakovenko [BNY10]. The bound follows from an effective construction of the Gauss-Manin connection for iterated integrals.
Nous donnons une borne supérieure effective et uniforme pour le nombre de zéros de la première fonction de Melnikov d’une perturbation polynomiale d’un champ de vecteurs hamiltonien polynomial sur le plan. La borne dépend des degrés du champ et de la perturbation, et de l’ordre de la fonction de Melnikov. Le cas générique a été considéré par Binyamini, Novikov et Yakovenko [BNY10]. La borne est obtenue à l’aide d’une construction effective de la connection de Gauss-Manin pour les intégrales itérées.
@article{AFST_2011_6_20_3_465_0, author = {Sergey Benditkis and Dmitry Novikov}, title = {On the number of zeros of {Melnikov} functions}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {465--491}, publisher = {Universit\'e Paul Sabatier, Institut de Math\'ematiques}, address = {Toulouse}, volume = {Ser. 6, 20}, number = {3}, year = {2011}, doi = {10.5802/afst.1314}, mrnumber = {2894835}, zbl = {1243.34042}, language = {en}, url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1314/} }
TY - JOUR AU - Sergey Benditkis AU - Dmitry Novikov TI - On the number of zeros of Melnikov functions JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2011 SP - 465 EP - 491 VL - 20 IS - 3 PB - Université Paul Sabatier, Institut de Mathématiques PP - Toulouse UR - https://afst.centre-mersenne.org/articles/10.5802/afst.1314/ DO - 10.5802/afst.1314 LA - en ID - AFST_2011_6_20_3_465_0 ER -
%0 Journal Article %A Sergey Benditkis %A Dmitry Novikov %T On the number of zeros of Melnikov functions %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2011 %P 465-491 %V 20 %N 3 %I Université Paul Sabatier, Institut de Mathématiques %C Toulouse %U https://afst.centre-mersenne.org/articles/10.5802/afst.1314/ %R 10.5802/afst.1314 %G en %F AFST_2011_6_20_3_465_0
Sergey Benditkis; Dmitry Novikov. On the number of zeros of Melnikov functions. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 20 (2011) no. 3, pp. 465-491. doi : 10.5802/afst.1314. https://afst.centre-mersenne.org/articles/10.5802/afst.1314/
[AGV] Arnold (V. I.), Gusein-Zade (S. M.), and Varchenko (A. N.).— Singularities of differentiable maps, vol. II, Monodromy and asymptotics of integrals, Birkhäuser Boston Inc., Boston, MA (1988). MR 89g:58024 | MR | Zbl
[BNY10] Binyamini (G.), Novikov (D.), Yakovenko (S.).— On the Number of Zeros of Abelian Integrals: A Constructive Solution of the Infinitesimal Hilbert Sixteenth Problem Inventiones Mathematicae, 181 No. 2, p. 227-289 (2010). | MR | Zbl
[Ch] Chen (K.-T.).— Collected papers of K.-T. Chen. Contemporary Mathematicians. Birkhauser Boston, Inc., Boston, MA (2001). | MR | Zbl
[D] Deligne (P.).— Équations différentielles à points singuliers réguliers Lecture Notes in Mathematics, Vol. 163. Springer-Verlag, Berlin-New York (1970). | MR | Zbl
[E92] Ecalle (J.).— Introduction aux fonctions analysables et preuve constructive de la conjecture de Dulac, Hermann, Paris (1992). MR 97f:58104 | MR | Zbl
[F96] Françoise (J. P.).— Successive derivatives of a first return map, application to the study of quadratic vector fields, Ergodic Theory Dynam. Systems 16, no. 1, p. 87-96 (1996). | MR | Zbl
[G98] Gavrilov (L.).— Petrov modules and zeros of Abelian integrals, Bull. Sci. Math. 122, no. 8, p. 571-584 (1998). MR 99m:32043 | MR | Zbl
[G05] Gavrilov (L.).— Higher order Poincaré-Pontryagin functions and iterated path integrals, Ann. Fac. Sci. Toulouse Math. (6) 14, no. 4, p. 663-682 (2005). MR2188587 (2006i:34074) | Numdam | MR | Zbl
[GN10] Gavrilov (L.) and Novikov (D.).— On the finite cyclicity of open period annuli, Duke Mathematical Journal. 152, No. 1, p. 1-26. (2010) 0807.0512. | MR | Zbl
[H] Harris (B.).— Iterated Integrals and Cycles on Algebraic Manifolds, Nankai Tracts in Mathematics, vol. 7, World Scientific (2004). | MR | Zbl
[I] Ilyashenko (Yu. S.).— Finiteness theorems for limit cycles, American Mathematical Society, Providence, RI (1991). MR 92k:58221 | Zbl
[I69] Ilyashenko (Yu. S.).— The origin of limit cycles under perturbation of the equation , where is a polynomial USSR Math.Sb. 78, No. 3, p. 360-373 (1969). | MR | Zbl
[I02] Ilyashenko (Yu. S.).— Centennial history of Hilbert’s 16th problem, Bull. Amer. Math. Soc. (N.S.) 39, no. 3, p. 301-354 (electronic) (2002). MR 1 898 209 | MR | Zbl
[IY] Ilyashenko (Yu) and Yakovenko (S.).— Lectures on analytic differential equations, Graduate Studies in Mathematics, vol. 86, American Mathematical Society, Providence, RI, (2008). | MR | Zbl
[K81] Kashiwara (M.).— Quasi-unipotent constructible sheaves, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 28 (1981), no. 3, p. 757-773 (1982). | MR | Zbl
[MN08] Movasati (H.), Nakai (I.).— Commuting holonomies and rigidity of holomorphic foliations Bull. Lond. Math. Soc. 40, no. 3, p. 473-478 (2008). | MR | Zbl
[N02] Novikov (D.).— Modules of Abelian integrals and Picard-Fuchs systems, Nonlinearity 15, no.5, p. 1435-1444 (2002). | MR | Zbl
[Y95] Yakovenko (S.).— A geometric proof of the Bautin theorem, Concerning the Hilbert 16th problem, Amer. Math. Soc., Providence, RI, p. 203-219 (1995). | MR | Zbl
[Z] Żołądek (H.).— The monodromy group, Instytut Matematyczny Polskiej Akademii Nauk. Monografie Matematyczne (New Series) [Mathematics Institute of the Polish Academy of Sciences. Mathematical Monographs (New Series)], vol. 67, Birkhäuser Verlag, Basel, (2006). MR2216496 | MR | Zbl
Cited by Sources: