We introduce an anticyclic operad given by a ternary generator and a quadratic relation. We show that it admits a natural basis indexed by planar binary trees. We then relate this construction to the familly of Tamari lattices by defining an isomorphism between and the Grothendieck group of the category . This isomorphism maps the basis of to the classes of projective modules and sends the anticyclic map of the operad to the Coxeter transformation of the derived category of . The Koszul duality theory for operads then allows us to compute the characteristic polynomial of the Coxeter transformation by a Legendre transform.
On introduit une opérade anticyclique définie par une présentation ternaire quadratique. On montre qu’elle admet une base indexée par les arbres binaires planaires. On relie cette construction à la famille des treillis de Tamari en construisant un isomorphisme entre et le groupe de Grothendieck de la catégorie qui envoie la base de sur les classes des modules projectifs et qui transforme la structure anticyclique de en la transformation de Coxeter de la catégorie dérivée de . La dualité de Koszul des opérades permet alors de calculer le polynôme caractéristique de cette transformation de Coxeter en utilisant une transformation de Legendre.
@article{AFST_2011_6_20_4_843_0, author = {Fr\'ed\'eric Chapoton}, title = {Sur une op\'erade ternaire li\'ee aux treillis de {Tamari}}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {843--869}, publisher = {Universit\'e Paul Sabatier, Institut de Math\'ematiques}, address = {Toulouse}, volume = {6e s{\'e}rie, 20}, number = {4}, year = {2011}, doi = {10.5802/afst.1326}, mrnumber = {2918216}, zbl = {1248.18009}, language = {fr}, url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1326/} }
TY - JOUR AU - Frédéric Chapoton TI - Sur une opérade ternaire liée aux treillis de Tamari JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2011 SP - 843 EP - 869 VL - 20 IS - 4 PB - Université Paul Sabatier, Institut de Mathématiques PP - Toulouse UR - https://afst.centre-mersenne.org/articles/10.5802/afst.1326/ DO - 10.5802/afst.1326 LA - fr ID - AFST_2011_6_20_4_843_0 ER -
%0 Journal Article %A Frédéric Chapoton %T Sur une opérade ternaire liée aux treillis de Tamari %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2011 %P 843-869 %V 20 %N 4 %I Université Paul Sabatier, Institut de Mathématiques %C Toulouse %U https://afst.centre-mersenne.org/articles/10.5802/afst.1326/ %R 10.5802/afst.1326 %G fr %F AFST_2011_6_20_4_843_0
Frédéric Chapoton. Sur une opérade ternaire liée aux treillis de Tamari. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 20 (2011) no. 4, pp. 843-869. doi : 10.5802/afst.1326. https://afst.centre-mersenne.org/articles/10.5802/afst.1326/
[1] Aguiar (M.) and Sottile (F.).— Structure of the Loday-Ronco Hopf algebra of trees. J. Algebra, 295(2) p. 473-511 (2006). | MR | Zbl
[2] Chapoton (F.).— On the Coxeter transformations for Tamari posets. Canad. Math. Bull., 50(2) p. 182-190 (2007). | MR | Zbl
[3] Chapoton (F.).— Le module dendriforme sur le groupe cyclique. Ann. Inst. Fourier (Grenoble), 58(7) p. 2333-2350 (2008). | Numdam | MR | Zbl
[4] Chapoton (F.).— Categorification of the dendriform operad. In Jean-Louis Loday and Bruno Vallette, editors, Proceedings of Operads 2009, Séminaire et Congrès. SMF, 2012. oai :arXiv.org :0909.2751.
[5] Curtis (C. W.) and Irving Reiner (I.).— Representation theory of finite groups and associative algebras. Pure and Applied Mathematics, Vol. XI. Interscience Publishers, a division of John Wiley & Sons, New York-London (1962). | MR | Zbl
[6] Dotsenko (V.) and Khoroshkin (A.).— Gröbner bases for operads. Duke Math. J., 153(2) p. 363-396 (2010). | MR | Zbl
[7] Ebrahimi-Fard (K.) and Manchon (D.).— Dendriform equations. J. Algebra, 322(11) p. 4053-4079 (2009). | MR
[8] Ebrahimi-Fard (K.), Manchon (D.), and Patras (F.).— New identities in dendriform algebras. J. Algebra, 320(2) p. 708-727 (2008). | MR | Zbl
[9] Fomin (S.) and Zelevinsky (A.).— Cluster algebras. I. Foundations. J. Amer. Math. Soc., 15(2) p. 497-529 (electronic) (2002). | MR | Zbl
[10] Friedman (H.) and Tamari (D.).— Problèmes d’associativité : Une structure de treillis finis induite par une loi demi-associative. J. Combinatorial Theory, 2 p. 215-242 (1967). | MR | Zbl
[11] Getzler (E.).— Operads and moduli spaces of genus 0 Riemann surfaces. In The moduli space of curves (Texel Island, 1994), volume 129 of Progr. Math., pages 199-230. Birkhäuser Boston, Boston, MA (1995). | MR | Zbl
[12] Getzler (E.) and Kapranov (M. M.).— Cyclic operads and cyclic homology. In Geometry, topology, & physics, Conf. Proc. Lecture Notes Geom. Topology, IV, p. 167-201. Int. Press, Cambridge, MA (1995). | MR | Zbl
[13] Getzler (E.) and Kapranov (M. M.).— Modular operads. Compositio Math., 110(1) p. 65-126 (1998). | MR | Zbl
[14] Gnedbaye (A. V.).— Opérades des algèbres (k + 1)-aires. In Operads : Proceedings of Renaissance Conferences (Hartford, CT/Luminy, 1995), volume 202 of Contemp. Math., pages 83-113. Amer. Math. Soc., Providence, RI (1997). | MR | Zbl
[15] Happel (D.).— Triangulated categories in the representation theory of finite-dimensional algebras, volume 119 of London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge (1988). | MR | Zbl
[16] Happel (D.) and Unger (L.).— On a partial order of tilting modules. Algebr. Represent. Theory, 8(2) p. 147-156 (2005). | MR | Zbl
[17] Hivert (F.), Novelli (J.-C.), and Thibon (J.-Y.).— The algebra of binary search trees. Theoret. Comput. Sci., 339(1) p. 129-165 (2005). | MR | Zbl
[18] Hoffbeck (E.).— A Poincaré-Birkhoff-Witt criterion for Koszul operads. Manuscripta Math., 131(1-2) p. 87-110 (2010). | MR | Zbl
[19] Huang (S.) and Tamari (D.).— Problems of associativity : A simple proof for the lattice property of systems ordered by a semi-associative law. J. Combinatorial Theory Ser. A, 13 p. 7-13 (1972). | MR | Zbl
[20] Ladkani (S.).— Universal derived equivalences of posets of cluster tilting objects (2007).
[21] Ladkani (S.).— Universal derived equivalences of posets of tilting modules (2007).
[22] Ladkani (S.).— On derived equivalences of categories of sheaves over finite posets. J. Pure Appl. Algebra, 212(2) p. 435-451 (2008). | MR | Zbl
[23] Lenzing (H.).— Coxeter transformations associated with finite-dimensional algebras. In Computational methods for representations of groups and algebras (Essen, 1997), volume 173 of Progr. Math., pages 287-308. Birkhäuser, Basel (1999). | MR | Zbl
[24] Loday (J.-L.).— Dialgebras. In Dialgebras and related operads, volume 1763 of Lecture Notes in Math., pages 7-66. Springer, Berlin (2001). | MR | Zbl
[25] Loday (J.-L.).— Arithmetree. J. Algebra, 258(1) p. 275-309 (2002). Special issue in celebration of Claudio Procesis 60th birthday. | MR | Zbl
[26] Loday (J.-L.) and Ronco (M. O.).— Order structure on the algebra of permutations and of planar binary trees. J. Algebraic Combin., 15(3) p. 253-270 (2002). | MR | Zbl
[27] Loday (J.-L.) and Vallette (B.).— Algebraic Operads. à paraître, 2010. xviii+512 pp.
[28] Macdonald (I. G.).— Symmetric functions and Hall polynomials. Oxford Mathematical Monographs. The Clarendon Press Oxford University Press, New York, second edition, 1995. With contributions by A. Zelevinsky, Oxford Science Publications. | MR | Zbl
[29] Markl (M.) and Remm (E.).— (Non-)Koszulity of operads for n-ary algebras, cohomology and deformations (2009).
[30] Markl (M.), Shnider (S.), and Stasheff (J.).— Operads in algebra, topology and physics, volume 96 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI (2002). | MR | Zbl
[31] Reading (N.).— Cambrian lattices. Adv. Math., 205(2) p. 313-353 (2006). | MR | Zbl
[32] Riedtmann (C.) and Schofield (A.).— On a simplicial complex associated with tilting modules. Comment. Math. Helv., 66(1) p. 70-78 (1991). | MR | Zbl
[33] Ronco (M.).— Primitive elements in a free dendriform algebra. In New trends in Hopf algebra theory (La Falda, 1999), volume 267 of Contemp. Math., pages 245-263. Amer. Math. Soc., Providence, RI (2000). | MR | Zbl
[34] Tamari (D.).— The algebra of bracketings and their enumeration. Nieuw Arch. Wisk. (3), 10 p. 131-146 (1962). | MR | Zbl
Cited by Sources: