An existence proof for the stationary compressible Stokes problem
Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 23 (2014) no. 4, pp. 847-875.

In this paper, we prove the existence of a solution for a quite general stationary compressible Stokes problem including, in particular, gravity effects. The Equation Of State gives the pressure as an increasing superlinear function of the density. This existence result is obtained by passing to the limit on the solution of a viscous approximation of the continuity equation.

Dans cet article, nous prouvons l’existence d’une solution pour le problème de Stokes compressible stationnaire en tenant compte, en particulier, des effets gravitaires. L’équation d’état donne la pression comme une fonction strictement croissante superlinéaire de la densité. L’existence de solution est obtenue en passant à la limite sur une approximation visqueuse de l’équation de continuité.

@article{AFST_2014_6_23_4_847_0,
     author = {A. Fettah and T. Gallou\"et and H. Lakehal},
     title = {An existence proof for the stationary compressible {Stokes} problem},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     pages = {847--875},
     publisher = {Universit\'e Paul Sabatier, Institut de Math\'ematiques},
     address = {Toulouse},
     volume = {Ser. 6, 23},
     number = {4},
     year = {2014},
     doi = {10.5802/afst.1427},
     mrnumber = {3270426},
     zbl = {06374891},
     language = {en},
     url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1427/}
}
TY  - JOUR
AU  - A. Fettah
AU  - T. Gallouët
AU  - H. Lakehal
TI  - An existence proof for the stationary compressible Stokes problem
JO  - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY  - 2014
SP  - 847
EP  - 875
VL  - 23
IS  - 4
PB  - Université Paul Sabatier, Institut de Mathématiques
PP  - Toulouse
UR  - https://afst.centre-mersenne.org/articles/10.5802/afst.1427/
DO  - 10.5802/afst.1427
LA  - en
ID  - AFST_2014_6_23_4_847_0
ER  - 
%0 Journal Article
%A A. Fettah
%A T. Gallouët
%A H. Lakehal
%T An existence proof for the stationary compressible Stokes problem
%J Annales de la Faculté des sciences de Toulouse : Mathématiques
%D 2014
%P 847-875
%V 23
%N 4
%I Université Paul Sabatier, Institut de Mathématiques
%C Toulouse
%U https://afst.centre-mersenne.org/articles/10.5802/afst.1427/
%R 10.5802/afst.1427
%G en
%F AFST_2014_6_23_4_847_0
A. Fettah; T. Gallouët; H. Lakehal. An existence proof for the stationary compressible Stokes problem. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 23 (2014) no. 4, pp. 847-875. doi : 10.5802/afst.1427. https://afst.centre-mersenne.org/articles/10.5802/afst.1427/

[1] Bijl (H.) and Wesseling (P.).— A unified method for computing incompressible and compressible ows in boundary-fitted coordinates. J. Comput. Phys., 141(2), p. 153-173 (1998). | MR | Zbl

[2] Bramble (J. H.).— A proof of the inf-sup condition for the Stokes equations on Lipschitz domains, Mathematical Models and Methods in Applied Sciences, 13, p. 361-371 (2003). | MR | Zbl

[3] Březina (J.), Novotný (A.).— On Weak Solutions of Steady Navier-Stokes Equations for Monatomic Gas, Comment. Math. Univ. Carolin. 49, p. 611-632 (2008). | MR | Zbl

[4] Droniou (J.), Vazquez (J. L.).— Noncoercive convection-diffusion elliptic problems with Neumann boundary conditions, Calc. Var. Partial Differential Equations 34, no. 4, p. 413-434 (2009). | MR | Zbl

[5] Eymard (R.), Gallouët (T.), Herbin (R.), Latché (J.-C.).— A convergent finite element-finite volume scheme for the compressible Stokes problem. Part II: the isentropic case. Math. Comp. 79, no. 270, p. 649-675 (2010). | MR | Zbl

[6] Feireisl (E.).— Dynamics of viscous compressible fluids. Oxford Lecture Series in Mathematics and its Applications, 26. Oxford University Press, Oxford (2004). | MR | Zbl

[7] Fettah (A.), Gallouët (T.).— Numerical approximation of the general compressible Stokes problem. IMA Journal of Numerical Analysis (2012). | MR

[8] Frehse (J.), Steinhauer (M.), Weigant (W.).— The Dirichlet Problem for Viscous Compressible Isothermal Navier-Stokes Equations in Two-Dimensions, Archive Ration. Mech. Anal. 198, no. 1, p. 1-12 (2010). | MR | Zbl

[9] Frehse (J.), Steinhauer (M.), Weigant (W.).— The Dirichlet Problem for Steady Viscous Compressible Flow in 3-D, Journal de Mathématiques Pures et Appliquées 97, no. 2, p. 85-97 (2012). | MR | Zbl

[10] Gallouët (T.), Herbin (R.).— Mesure, Intégration, Probabilités. Ellipses (2013). | Zbl

[11] Gallouët (T.), Herbin (R.), Latché (J.-C.).— A convergent finite element-finite volume scheme for the compressible Stokes problem. I. The isothermal case. Math. Comp., 78(267), p. 1333-1352 (2009). | MR | Zbl

[12] Harlow (F.), Amsden (A.).— A numerical uid dynamics calculation method for all flow speeds. Journal of Computational Physics, 8, p. 197-213 (1971). | Zbl

[13] Jesslé (D.), Novotný (A.).— Existence of renormalized weak solutions to the steady equations describing compressible fluids in barotropic regimes, J. Math. Pures Appl. 99 no. 3, p. 280-296 (2013). | MR

[14] Jiang (S.), Zhou (C.).— Existence of weak solutions to the three dimensional steady compressible Navier-Stokes equations, Annales IHP - Analyse Nonlinéaire 28, p. 485-498 (2011). | Numdam | MR | Zbl

[15] Leray (J.).— Sur le mouvement d’un liquide visqueux emplissant l’espace. Acta Math., 63(1), p. 193-248 (1934). | MR

[16] Lions (P.-L.).— Mathematical topics in fluid mechanics -volume 2- compressible models. volume 10 of Oxford Lecture Series in Mathematics and its Applications. Oxford University Press (1998). | MR | Zbl

[17] Novotnỳ (A.), Straškraba (I.).— Introduction to the mathematical theory of compressible flow. Oxford Lecture Series in Mathematics and its Applications, 27. Oxford University Press, Oxford (2004). | MR | Zbl

[18] Novo (S.), Novotný (A.).— On the existence of weak solutions to the steady compressible Navier-Stokes equations when the density is not square integrable, J. Math. Kyoto Univ. 42, p. 531-550 (2002). | MR | Zbl

[19] Oran (E. S.), Boris (J. P.).— Numerical simulation of reactive flow. Cambridge University Press (2001). | Zbl

[20] Plotnikov (P.I.), Sokolowski (J.).— Stationary solutions of Navier-Stokes equations for diatomic gases, Russian Math. Surv. 62, p. 561-593 (2007). | MR | Zbl

Cited by Sources: