Dans cet article, nous complétons la preuve de l’inégalité de Sobolev logarithmique obtenue par Gentil dans [8] et donnons aussi une preuve supplémentaire. Notre approche est basée sur une équation de Hamilton–Jacobi et sur plusieurs approximations de fonctions dans .
In this paper, we bridge a gap in the proof of the –logarithmic Sobolev inequality obtained by Gentil [8, Theorem 1.1], and provide a supplementary proof. Our proof is based on a Hamilton–Jacobi equation and several approximations of functions in .
@article{AFST_2015_6_24_1_119_0, author = {Yasuhiro Fujita}, title = {A supplementary proof of $L^p${\textendash}logarithmic {Sobolev} inequality}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {119--132}, publisher = {Universit\'e Paul Sabatier, Institut de Math\'ematiques}, address = {Toulouse}, volume = {Ser. 6, 24}, number = {1}, year = {2015}, doi = {10.5802/afst.1444}, language = {en}, url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1444/} }
TY - JOUR AU - Yasuhiro Fujita TI - A supplementary proof of $L^p$–logarithmic Sobolev inequality JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2015 SP - 119 EP - 132 VL - 24 IS - 1 PB - Université Paul Sabatier, Institut de Mathématiques PP - Toulouse UR - https://afst.centre-mersenne.org/articles/10.5802/afst.1444/ DO - 10.5802/afst.1444 LA - en ID - AFST_2015_6_24_1_119_0 ER -
%0 Journal Article %A Yasuhiro Fujita %T A supplementary proof of $L^p$–logarithmic Sobolev inequality %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2015 %P 119-132 %V 24 %N 1 %I Université Paul Sabatier, Institut de Mathématiques %C Toulouse %U https://afst.centre-mersenne.org/articles/10.5802/afst.1444/ %R 10.5802/afst.1444 %G en %F AFST_2015_6_24_1_119_0
Yasuhiro Fujita. A supplementary proof of $L^p$–logarithmic Sobolev inequality. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 24 (2015) no. 1, pp. 119-132. doi : 10.5802/afst.1444. https://afst.centre-mersenne.org/articles/10.5802/afst.1444/
[1] Beckner (W.).— Geometric asymptotics and the logarithmic Sobolev inequality, Forum Math. 11, p. 105-137 (1999). | MR | Zbl
[2] Bobkov (S. G.), Gentil (I.) and Ledoux (M.).— Hypercontractivity of Hamilton-Jacobi equations, J. Math. Pures Appl. 80, p. 669-696 (2001). | MR | Zbl
[3] Bobkov (S. G.) and Ledoux (M.).— From Brunn-Minkowski to sharp Sobolev inequalities, Annali di Matematica Pura ed Applicata. Series IV 187, p. 369-384 (2008). | MR | Zbl
[4] Cannarsa (P.) and Sinestrari (C.).— Semiconcave functions, Hamilton-Jacobi equations, and optimal control, Progress in Nonlinear Differential Equations and their Applications, 58. Birkhäuser Boston, Inc., Boston, 2004. | MR | Zbl
[5] Das Gupta (S.).— Brunn-Minkowski inequality and its aftermath J. Multivariate Anal. 10, p. 296-318 (1980). | MR | Zbl
[6] Del Pino (M.) and Dolbeault (J.).— The optimal Euclidean -Sobolev logarithmic inequality, J. Funct. Anal. 197, p. 151-161 (2003). | MR | Zbl
[7] Gentil (I.).— Ultracontractive bounds on Hamilton-Jacobi equations, Bull. Sci. Math. 126, p. 507-524 (2002). | MR | Zbl
[8] Gentil (I.).— The general optimal -Euclidean logarithmic Sobolev inequality by Hamilton-Jacobi equations, J. Funct. Anal. 202, p. 591-599 (2003). | MR | Zbl
[9] Ledoux (M.).— Isoperimetry and Gaussian analysis, Lectures on Probability Theory and Statistics (Saint-Flour, 1994), Lecture Notes in Mathematics, Vol. 1648, Springer, Berlin, p.165-294 (1996). | MR | Zbl
[10] Weissler (F.).— Logarithmic Sobolev inequalities for the heat-diffusion semigroup Trans. Amer. Math. Soc. 237, p. 255-269 (1978). | MR | Zbl
Cité par Sources :