logo AFST

A supplementary proof of L p –logarithmic Sobolev inequality
Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 24 (2015) no. 1, pp. 119-132.

Dans cet article, nous complétons la preuve de l’inégalité de Sobolev logarithmique L p obtenue par Gentil dans [8] et donnons aussi une preuve supplémentaire. Notre approche est basée sur une équation de Hamilton–Jacobi et sur plusieurs approximations de fonctions dans W 1,p ( n ).

In this paper, we bridge a gap in the proof of the L p –logarithmic Sobolev inequality obtained by Gentil [8, Theorem 1.1], and provide a supplementary proof. Our proof is based on a Hamilton–Jacobi equation and several approximations of functions in W 1,p ( n ).

Reçu le :
Accepté le :
Publié le :
DOI : https://doi.org/10.5802/afst.1444
@article{AFST_2015_6_24_1_119_0,
     author = {Yasuhiro Fujita},
     title = {A supplementary proof of $L^p${\textendash}logarithmic {Sobolev} inequality},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     pages = {119--132},
     publisher = {Universit\'e Paul Sabatier, Toulouse},
     volume = {Ser. 6, 24},
     number = {1},
     year = {2015},
     doi = {10.5802/afst.1444},
     language = {en},
     url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1444/}
}
Yasuhiro Fujita. A supplementary proof of $L^p$–logarithmic Sobolev inequality. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 24 (2015) no. 1, pp. 119-132. doi : 10.5802/afst.1444. https://afst.centre-mersenne.org/articles/10.5802/afst.1444/

[1] Beckner (W.).— Geometric asymptotics and the logarithmic Sobolev inequality, Forum Math. 11, p. 105-137 (1999). | MR 1673903 | Zbl 0917.58049

[2] Bobkov (S. G.), Gentil (I.) and Ledoux (M.).— Hypercontractivity of Hamilton-Jacobi equations, J. Math. Pures Appl. 80, p. 669-696 (2001). | MR 1846020 | Zbl 1038.35020

[3] Bobkov (S. G.) and Ledoux (M.).— From Brunn-Minkowski to sharp Sobolev inequalities, Annali di Matematica Pura ed Applicata. Series IV 187, p. 369-384 (2008). | MR 2393140 | Zbl 1223.26036

[4] Cannarsa (P.) and Sinestrari (C.).— Semiconcave functions, Hamilton-Jacobi equations, and optimal control, Progress in Nonlinear Differential Equations and their Applications, 58. Birkhäuser Boston, Inc., Boston, 2004. | MR 2041617 | Zbl 1095.49003

[5] Das Gupta (S.).— Brunn-Minkowski inequality and its aftermath J. Multivariate Anal. 10, p. 296-318 (1980). | MR 588074 | Zbl 0467.26008

[6] Del Pino (M.) and Dolbeault (J.).— The optimal Euclidean L p -Sobolev logarithmic inequality, J. Funct. Anal. 197, p. 151-161 (2003). | MR 1957678 | Zbl 1091.35029

[7] Gentil (I.).— Ultracontractive bounds on Hamilton-Jacobi equations, Bull. Sci. Math. 126, p. 507-524 (2002). | MR 1931627 | Zbl 1015.35019

[8] Gentil (I.).— The general optimal L p -Euclidean logarithmic Sobolev inequality by Hamilton-Jacobi equations, J. Funct. Anal. 202, p. 591-599 (2003). | MR 1990539 | Zbl 1173.35424

[9] Ledoux (M.).— Isoperimetry and Gaussian analysis, Lectures on Probability Theory and Statistics (Saint-Flour, 1994), Lecture Notes in Mathematics, Vol. 1648, Springer, Berlin, p.165-294 (1996). | MR 1600888 | Zbl 0874.60005

[10] Weissler (F.).— Logarithmic Sobolev inequalities for the heat-diffusion semigroup Trans. Amer. Math. Soc. 237, p. 255-269 (1978). | MR 479373 | Zbl 0376.47019