logo AFST

About the analogy between optimal transport and minimal entropy
Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 26 (2017) no. 3, pp. 569-600.

Nous décrivons des analogies entre le transport optimal et le problème de Schrödinger lorsque le coût du transport est remplacé par un coût entropique avec une mesure de référence sur les trajectoires. Une formule duale de Kantorovich, une formulation de type Benamou–Brenier du coût entropique sont démontrées, ainsi que des inégalités de contraction par rapport au coût entropique. Cette analogie est aussi illustrée par des exemples numériques où la mesure de référence sur les trajectoires est donnée par le mouvement Brownien ou bien le processus d’Ornstein–Uhlenbeck.

Notre approche s’appuie sur la théorie de la mesure, plutôt que sur le contrôle optimal stochastique, et l’entropie relative joue un rôle fondamental.

We describe some analogy between optimal transport and the Schrödinger problem where the transport cost is replaced by an entropic cost with a reference path measure. A dual Kantorovich type formulation and a Benamou–Brenier type representation formula of the entropic cost are derived, as well as contraction inequalities with respect to the entropic cost. This analogy is also illustrated with some numerical examples where the reference path measure is given by the Brownian motion or the Ornstein–Uhlenbeck process.

Our point of view is measure theoretical, rather than based on stochastic optimal control, and the relative entropy with respect to path measures plays a prominent role.

Reçu le :
Accepté le :
Publié le :
DOI : https://doi.org/10.5802/afst.1546
Mots clés : Schrödinger problem, entropic interpolation, Wasserstein distance, Kantorovich duality
@article{AFST_2017_6_26_3_569_0,
     author = {Ivan Gentil and Christian L\'eonard and Luigia Ripani},
     title = {About the analogy between optimal transport and minimal entropy},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     pages = {569--600},
     publisher = {Universit\'e Paul Sabatier, Toulouse},
     volume = {Ser. 6, 26},
     number = {3},
     year = {2017},
     doi = {10.5802/afst.1546},
     mrnumber = {3669966},
     zbl = {1380.49067},
     language = {en},
     url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1546/}
}
Ivan Gentil; Christian Léonard; Luigia Ripani. About the analogy between optimal transport and minimal entropy. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 26 (2017) no. 3, pp. 569-600. doi : 10.5802/afst.1546. https://afst.centre-mersenne.org/articles/10.5802/afst.1546/

[1] Luigi Ambrosio; Nicola Gigli; Giuseppe Savaré Gradient flows in metric spaces and in the space of probability measures, Lectures in Mathematics, Birkhäuser, 2008, vii+334 pages | Zbl 1145.35001

[2] Dominique Bakry; François Bolley; Ivan Gentil; Patrick Maheux Weighted Nash inequalities, Rev. Mat. Iberoam., Volume 28 (2012) no. 3, pp. 879-906 | Article | MR 2949623 | Zbl 1252.35015

[3] Dominique Bakry; Ivan Gentil; Michel Ledoux Analysis and geometry of Markov diffusion operators, Grundlehren der Mathematischen Wissenschaften, Volume 348, Springer, 2014, xx+552 pages | MR 3155209 | Zbl 1376.60002

[4] Dominique Bakry; Ivan Gentil; Michel Ledoux On Harnack inequalities and optimal transportation, Ann. Sc. Norm. Super. Pisa, Volume 14 (2015) no. 3, pp. 705-727 | MR 3445198 | Zbl 1331.35151

[5] Jean-David Benamou; Yann Brenier A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem, Numer. Math., Volume 84 (2000) no. 3, pp. 375-393 | Article | MR 1738163 | Zbl 0968.76069

[6] Jean-David Benamou; Guillaume Carlier; Marco Cuturi; Luca Nenna; Gabriel Peyré Iterative Bregman projections for regularized transportation problems, SIAM J. Sci. Comput., Volume 37 (2015) no. 2, p. A1111-A1138 | Article | MR 3340204 | Zbl 1319.49073

[7] Yongxin Chen; Tryphon Georgiou; Michele Pavon On the relation between optimal transport and Schrödinger bridges: A stochastic control viewpoint, J. Optim. Theory Appl., Volume 169 (2016) no. 2, pp. 671-691 | Article | Zbl 1344.49072

[8] Leonid Kantorovich On the translocation of masses, C. R. (Dokl.) Acad. Sci. URSS, Volume 37 (1942), pp. 199-201 | MR 9619

[9] Kazumasa Kuwada Space-time Wasserstein controls and Bakry-Ledoux type gradient estimates., Calc. Var. Partial Differ. Equ., Volume 54 (2015) no. 1, pp. 127-161 | Article | MR 3385156 | Zbl 1386.60273

[10] Christian Léonard Convex conjugates of integral functionals, Acta Math. Hung., Volume 93 (2001) no. 4, pp. 253-280 | Article | MR 1925355 | Zbl 0997.52008

[11] Christian Léonard Minimization of energy functionals applied to some inverse problems, Appl. Math. Optim., Volume 44 (2001) no. 3, pp. 273-297 | MR 1851741 | Zbl 1161.52303

[12] Christian Léonard From the Schrödinger problem to the Monge-Kantorovich problem, J. Funct. Anal., Volume 262 (2012) no. 4, pp. 1879-1920 | Article | Zbl 1236.49088

[13] Christian Léonard Girsanov theory under a finite entropy condition, Séminaire de Probabilités XLIV (Lecture Notes in Math.) Volume 2046 (2012), pp. 429-465 | Article | MR 2953359 | Zbl 1253.60051

[14] Christian Léonard Some properties of path measures, Séminaire de probabilités de Strasbourg, vol. 46. (Lecture Notes in Mathematics) Volume 2123 (2014), pp. 207-230 | Article | MR 3330819 | Zbl 1390.60279

[15] Christian Léonard A survey of the Schrödinger problem and some of its connections with optimal transport, Discrete Contin. Dyn. Syst., Volume 34 (2014) no. 4, pp. 1533-1574 | Article | Zbl 1277.49052

[16] Toshio Mikami; Michèle Thieullen Duality theorem for the stochastic optimal control problem, Stoch. Proc. Appl., Volume 116 (2006) no. 12, pp. 1815-1835 | Article | MR 2307060

[17] E. Nelson Dynamical theories of Brownian motion, Princeton University Press, 1967, 142 pages | Zbl 0165.58502

[18] Max-K von Renesse; Karl-Theodor Sturm Transport inequalities, gradient estimates, entropy, and Ricci curvature, Commun. Pure Appl. Math., Volume 58 (2005) no. 7, pp. 923-940 | Article | MR 2142879 | Zbl 1078.53028

[19] Gilles Royer Une initiation aux inégalités de Sobolev logarithmiques, Cours spécialisés (Paris), Volume 5, Société Mathématique de France, 1999, 114 pages | MR 1704288 | Zbl 0927.60006

[20] Daniel W. Stroock Partial differential equations for probabilists, Cambridge Studies in Advanced Mathematics, Volume 112, Cambridge University Press, 2008, xv+215 pages | MR 2410225 | Zbl 1145.35002

[21] Cédric Villani Topics in optimal transportation, Graduate Studies in Mathematics, Volume 58, American Mathematical Society, 2003, xvi+370 pages | MR 1964483 | Zbl 1106.90001

[22] Cédric Villani Optimal transport, old and new, Grundlehren der Mathematischen Wissenschaften, Volume 338, Springer, 2009, xxii+973 pages | Zbl 1156.53003

[23] Jean-Claude Zambrini Variational processes and stochastic versions of mechanics, J. Math. Phys., Volume 27 (1986), pp. 2307-2330 | Article | MR 854761 | Zbl 0623.60102