logo AFST

On the Nodal set of a second Dirichlet eigenfunction in a doubly connected domain
Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 27 (2018) no. 4, pp. 863-873.

Ce papier étudie la géométrie de l’ensemble nodal de la seconde fonction propre du laplacien avec conditions de Dirichlet dans un domaine doublement connexe de forme Ω=DB ¯. Les résultats obtenus sont utilisés dans un problème d’optimisation de la seconde valeur propre.

We investigate the geometry of the nodal set of a second eigenfunction of the Dirichlet Laplacian in a doubly connected Euclidean plane domain of the form Ω=DB ¯ and obtain results of Payne’s type. For instance, we prove that when D and B are symmetric and convex with respect to a line, then the nodal set cannot enclose B. Moreover, if Ω has a second axis of symmetry, then the nodal line intersects both B and D.

We also use these results in the optimization of the second eigenvalue for the problem of optimal placement of B within D.

Reçu le :
Accepté le :
Publié le :
DOI : https://doi.org/10.5802/afst.1585
Classification : 35P15,  49R50
Mots clés : Dirichlet Laplacian, Nodal set, second eigenfunction, extremal eigenvalue
@article{AFST_2018_6_27_4_863_0,
     author = {Rola Kiwan},
     title = {On the {Nodal} set of a second {Dirichlet} eigenfunction in a doubly connected domain},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     pages = {863--873},
     publisher = {Universit\'e Paul Sabatier, Toulouse},
     volume = {Ser. 6, 27},
     number = {4},
     year = {2018},
     doi = {10.5802/afst.1585},
     language = {en},
     url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1585/}
}
Rola Kiwan. On the Nodal set of a second Dirichlet eigenfunction in a doubly connected domain. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 27 (2018) no. 4, pp. 863-873. doi : 10.5802/afst.1585. https://afst.centre-mersenne.org/articles/10.5802/afst.1585/

[1] Giovanni Alessandrini Nodal lines of eigenfunctions of the fixed membrane problem in general convex domains, Comment. Math. Helv., Volume 69 (1994) no. 1, pp. 142-154 | MR MR1259610 | Zbl 0838.35006

[2] Lucio Damascelli On the nodal set of the second eigenfunction of the Laplacian in symmetric domains in N , Atti Accad. Naz. Lincei, Cl. Sci. Fis. Mat. Nat., Volume 11 (2000) no. 3, pp. 175-181 | MR MR1841691 | Zbl 1042.35036

[3] Ahmad El Soufi; Rola Kiwan Extremal first Dirichlet eigenvalue of doubly connected plane domains and dihedral symmetry, SIAM J. Math. Anal., Volume 39 (2007) no. 4, pp. 1112-1119 | Zbl 1156.35068

[4] Ahmad El Soufi; Rola Kiwan Where to place a spherical obstacle so as to maximize the second Dirichlet eigenvalue, Communications on Pure and Applied Analysis, Volume 7 (2008) no. 5, pp. 1193-1201

[5] Søren Fournais The nodal surface of the second eigenfunction of the Laplacian in D can be closed, J. Differ. Equations, Volume 173 (2001) no. 1, pp. 145-159 | MR MR1836248 | Zbl 1011.47033

[6] Evans M. Harrell; Pawel Kröger; Kazuhiro Kurata On the placement of an obstacle or a well so as to optimize the fundamental eigenvalue, SIAM J. Math. Anal., Volume 33 (2001) no. 1, pp. 240-259 | MR MR1858877 | Zbl 0994.47015

[7] Maria Hoffmann-Ostenhof; Thomas Hoffmann-Ostenhof; Nikolai Nadirashvili The nodal line of the second eigenfunction of the Laplacian in 2 can be closed, Duke Math. J., Volume 90 (1997) no. 3, pp. 631-640 | MR MR1480548 | Zbl 0956.35027

[8] David Jerison The first nodal line of a convex planar domain, Int. Math. Res. Not., Volume 1991 (1991) no. 1, pp. 1-5 | Zbl 0780.35068

[9] James Kennedy Closed nodal surfaces for simply connected domains in higher dimensions, Indiana Univ. Math. J., Volume 62 (2013) no. 3, pp. 785-798 | Zbl 1302.35268

[10] Chang-Shou Lin On the second eigenfunctions of the Laplacian in 2 , Commun. Math. Phys., Volume 111 (1987) no. 2, pp. 161-166 | MR MR899848 | Zbl 0637.35058

[11] Antonios D. Melas On the nodal line of the second eigenfunction of the Laplacian in 2 , J. Differ. Geom., Volume 35 (1992) no. 1, pp. 255-263 | MR MR1152231 | Zbl 0769.58056

[12] Lawrence E. Payne Isoperimetric inequalities and their applications, SIAM Rev., Volume 9 (1967), pp. 453-488 | MR MR0218975 | Zbl 0154.12602

[13] Lawrence E. Payne On two conjectures in the fixed membrane eigenvalue problem, Z. Angew. Math. Phys., Volume 24 (1973), pp. 721-729 | MR MR0333487 | Zbl 0272.35058

[14] Rolf Pütter On the nodal lines of second eigenfunctions of the fixed membrane problem, Comment. Math. Helv., Volume 65 (1990) no. 1, pp. 96-103 | MR MR1036131 | Zbl 0705.35003

[15] Dong-Hui Yang; Bao-Zhu Guo On nodal line of the second eigenfunction of the Laplacian over concave domains in 2 , J. Syst. Sci. Complex., Volume 26 (2013) no. 3, pp. 483-488 | Zbl 1282.35264

[16] Shing-Tung Yau Survey on partial differential equations in differential geometry, Seminar on Differential Geometry (Annals of Mathematics Studies) Volume 102, Princeton University Press, 1982, pp. 3-71 | MR MR645729 | Zbl 0478.53001