We investigate the geometry of the nodal set of a second eigenfunction of the Dirichlet Laplacian in a doubly connected Euclidean plane domain of the form and obtain results of Payne’s type. For instance, we prove that when and are symmetric and convex with respect to a line, then the nodal set cannot enclose . Moreover, if has a second axis of symmetry, then the nodal line intersects both and .
We also use these results in the optimization of the second eigenvalue for the problem of optimal placement of within .
Ce papier étudie la géométrie de l’ensemble nodal de la seconde fonction propre du laplacien avec conditions de Dirichlet dans un domaine doublement connexe de forme . Les résultats obtenus sont utilisés dans un problème d’optimisation de la seconde valeur propre.
Accepted:
Published online:
DOI: 10.5802/afst.1585
Keywords: Dirichlet Laplacian, Nodal set, second eigenfunction, extremal eigenvalue
Rola Kiwan 1

@article{AFST_2018_6_27_4_863_0, author = {Rola Kiwan}, title = {On the {Nodal} set of a second {Dirichlet} eigenfunction in a doubly connected domain}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {863--873}, publisher = {Universit\'e Paul Sabatier, Toulouse}, volume = {Ser. 6, 27}, number = {4}, year = {2018}, doi = {10.5802/afst.1585}, zbl = {1426.35173}, mrnumber = {3884612}, language = {en}, url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1585/} }
TY - JOUR AU - Rola Kiwan TI - On the Nodal set of a second Dirichlet eigenfunction in a doubly connected domain JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2018 SP - 863 EP - 873 VL - 27 IS - 4 PB - Université Paul Sabatier, Toulouse UR - https://afst.centre-mersenne.org/articles/10.5802/afst.1585/ DO - 10.5802/afst.1585 LA - en ID - AFST_2018_6_27_4_863_0 ER -
%0 Journal Article %A Rola Kiwan %T On the Nodal set of a second Dirichlet eigenfunction in a doubly connected domain %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2018 %P 863-873 %V 27 %N 4 %I Université Paul Sabatier, Toulouse %U https://afst.centre-mersenne.org/articles/10.5802/afst.1585/ %R 10.5802/afst.1585 %G en %F AFST_2018_6_27_4_863_0
Rola Kiwan. On the Nodal set of a second Dirichlet eigenfunction in a doubly connected domain. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 27 (2018) no. 4, pp. 863-873. doi : 10.5802/afst.1585. https://afst.centre-mersenne.org/articles/10.5802/afst.1585/
[1] Nodal lines of eigenfunctions of the fixed membrane problem in general convex domains, Comment. Math. Helv., Volume 69 (1994) no. 1, pp. 142-154 | DOI | MR | Zbl
[2] On the nodal set of the second eigenfunction of the Laplacian in symmetric domains in , Atti Accad. Naz. Lincei, Cl. Sci. Fis. Mat. Nat., Volume 11 (2000) no. 3, pp. 175-181 | MR | Zbl
[3] Extremal first Dirichlet eigenvalue of doubly connected plane domains and dihedral symmetry, SIAM J. Math. Anal., Volume 39 (2007) no. 4, pp. 1112-1119 | DOI | MR | Zbl
[4] Where to place a spherical obstacle so as to maximize the second Dirichlet eigenvalue, Communications on Pure and Applied Analysis, Volume 7 (2008) no. 5, pp. 1193-1201 | MR | Zbl
[5] The nodal surface of the second eigenfunction of the Laplacian in can be closed, J. Differ. Equations, Volume 173 (2001) no. 1, pp. 145-159 | DOI | MR | Zbl
[6] On the placement of an obstacle or a well so as to optimize the fundamental eigenvalue, SIAM J. Math. Anal., Volume 33 (2001) no. 1, pp. 240-259 | MR | Zbl
[7] The nodal line of the second eigenfunction of the Laplacian in can be closed, Duke Math. J., Volume 90 (1997) no. 3, pp. 631-640 | DOI | MR | Zbl
[8] The first nodal line of a convex planar domain, Int. Math. Res. Not., Volume 1991 (1991) no. 1, pp. 1-5 | DOI | MR | Zbl
[9] Closed nodal surfaces for simply connected domains in higher dimensions, Indiana Univ. Math. J., Volume 62 (2013) no. 3, pp. 785-798 | DOI | MR | Zbl
[10] On the second eigenfunctions of the Laplacian in , Commun. Math. Phys., Volume 111 (1987) no. 2, pp. 161-166 | MR | Zbl
[11] On the nodal line of the second eigenfunction of the Laplacian in , J. Differ. Geom., Volume 35 (1992) no. 1, pp. 255-263 | DOI | MR | Zbl
[12] Isoperimetric inequalities and their applications, SIAM Rev., Volume 9 (1967), pp. 453-488 | DOI | MR | Zbl
[13] On two conjectures in the fixed membrane eigenvalue problem, Z. Angew. Math. Phys., Volume 24 (1973), pp. 721-729 | DOI | MR | Zbl
[14] On the nodal lines of second eigenfunctions of the fixed membrane problem, Comment. Math. Helv., Volume 65 (1990) no. 1, pp. 96-103 | DOI | MR | Zbl
[15] On nodal line of the second eigenfunction of the Laplacian over concave domains in , J. Syst. Sci. Complex., Volume 26 (2013) no. 3, pp. 483-488 | DOI | MR | Zbl
[16] Survey on partial differential equations in differential geometry, Seminar on Differential Geometry (Annals of Mathematics Studies), Volume 102, Princeton University Press, 1982, pp. 3-71 | MR | Zbl
Cited by Sources: