logo AFST
Densely related groups
Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 28 (2019) no. 4, pp. 619-653.

We study the class of densely related groups. These are finitely generated (or more generally, compactly generated locally compact) groups satisfying a strong negation of being finitely presented, in the sense that new relations appear at all scales. Here, new relations means relations that do not follow from relations of smaller size. Being densely related is a quasi-isometry invariant among finitely generated groups.

We check that a densely related group has none of its asymptotic cones simply connected. In particular a lacunary hyperbolic group cannot be densely related.

We prove that the Grigorchuk group is densely related. We also show that a finitely generated group that is (infinite locally finite)-by-cyclic and which satisfies a law must be densely related. Given a class 𝒞 of finitely generated groups, we consider the following dichotomy: every group in 𝒞 is either finitely presented or densely related. We show that this holds within the class of nilpotent-by-cyclic groups and the class of metabelian groups. In contrast, this dichotomy is no longer true for the class of 3-step solvable groups.

On s’intéresse à la classe des groupes densément présentés. Il s’agit des groupes de type fini (ou plus généralement des groupes localement compacts compactement engendrés) dans lesquels de nouvelles relations apparaissent à intervalles réguliers. Une relation est dite nouvelle si elle n’est pas conséquence de relations de longueur plus petites. Pour un groupe de type fini, être densément présenté est un invariant de quasi-isométrie.

On vérifie qu’un groupe densément présenté ne peut pas avoir de cône asymptotique simplement connexe. En particulier un groupe lacunaire hyperbolique n’est jamais densément présenté.

On montre que le groupe de Grigorchuk est densément présenté. On prouve également que tout groupe de type fini (non virtuellement cyclique) qui est (localement fini)-par- et qui satisfait une loi, est densément présenté. Étant donnée une classe 𝒞 de groupes de type fini, on considère l’alternative suivante : tout groupe dans 𝒞 est soit finiment présenté, soit densément présenté. On montre que cette alternative est satisfaite par la classe des groupes nilpotents-par-cyclique et la classe des groupes métabéliens. A contrario, cette dichotomie n’est plus vraie pour les groupes résolubles de classe 3.

Published online:
DOI: 10.5802/afst.1611
Classification: 20F05, 20F65, 20F69, 20F16, 22D05
Yves Cornulier 1; Adrien Le Boudec 2

1 CNRS and Univ Lyon, Univ Claude Bernard Lyon 1, Institut Camille Jordan, 43 blvd du 11 novembre 1918, 69622 Villeurbanne, France
2 CNRS, Unité de Mathématiques Pures et Appliquées, ENS Lyon, France
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
     author = {Yves Cornulier and Adrien Le Boudec},
     title = {Densely related groups},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     pages = {619--653},
     publisher = {Universit\'e Paul Sabatier, Toulouse},
     volume = {Ser. 6, 28},
     number = {4},
     year = {2019},
     doi = {10.5802/afst.1611},
     language = {en},
     url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1611/}
AU  - Yves Cornulier
AU  - Adrien Le Boudec
TI  - Densely related groups
JO  - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY  - 2019
SP  - 619
EP  - 653
VL  - 28
IS  - 4
PB  - Université Paul Sabatier, Toulouse
UR  - https://afst.centre-mersenne.org/articles/10.5802/afst.1611/
DO  - 10.5802/afst.1611
LA  - en
ID  - AFST_2019_6_28_4_619_0
ER  - 
%0 Journal Article
%A Yves Cornulier
%A Adrien Le Boudec
%T Densely related groups
%J Annales de la Faculté des sciences de Toulouse : Mathématiques
%D 2019
%P 619-653
%V 28
%N 4
%I Université Paul Sabatier, Toulouse
%U https://afst.centre-mersenne.org/articles/10.5802/afst.1611/
%R 10.5802/afst.1611
%G en
%F AFST_2019_6_28_4_619_0
Yves Cornulier; Adrien Le Boudec. Densely related groups. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 28 (2019) no. 4, pp. 619-653. doi : 10.5802/afst.1611. https://afst.centre-mersenne.org/articles/10.5802/afst.1611/

[1] Juan M. Alonso Finiteness conditions on groups and quasi-isometries, J. Pure Appl. Algebra, Volume 95 (1994) no. 2, pp. 121-129 | DOI | MR | Zbl

[2] Laurent Bartholdi Endomorphic presentations of branch groups, J. Algebra, Volume 268 (2003) no. 2, pp. 419-443 | DOI | MR | Zbl

[3] Gilbert Baumslag Wreath products and finitely presented groups, Math. Z., Volume 75 (1960/1961), pp. 22-28 | DOI | MR

[4] Gilbert Baumslag; Ralph Strebel Some finitely generated, infinitely related metabelian groups with trivial multiplicator, J. Algebra, Volume 40 (1976) no. 1, pp. 46-62 | DOI | MR | Zbl

[5] Robert Bieri; Yves Cornulier; Luc Guyot; Ralph Strebel Infinite presentability of groups and condensation, J. Inst. Math. Jussieu, Volume 13 (2014) no. 4, pp. 811-848 | DOI | MR | Zbl

[6] Robert Bieri; J. R. J. Groves The geometry of the set of characters induced by valuations, J. Reine Angew. Math., Volume 347 (1984), pp. 168-195 | MR | Zbl

[7] Robert Bieri; Ralph Strebel Almost finitely presented soluble groups, Comment. Math. Helv., Volume 53 (1978) no. 2, pp. 258-278 | DOI | MR | Zbl

[8] Robert Bieri; Ralph Strebel Valuations and finitely presented metabelian groups, Proc. Lond. Math. Soc., Volume 41 (1980) no. 3, pp. 439-464 | DOI | MR | Zbl

[9] B. H. Bowditch Continuously many quasi-isometry classes of 2-generator groups, Comment. Math. Helv., Volume 73 (1998) no. 2, pp. 232-236 | DOI | MR | Zbl

[10] J. Brieussel; T. Zheng Speed of random walks, isoperimetry and compression of finitely generated groups (https://arxiv.org/abs/1510.08040)

[11] Yves Cornulier Finitely presented wreath products and double coset decompositions, Geom. Dedicata, Volume 122 (2006), pp. 89-108 | DOI | MR | Zbl

[12] Yves Cornulier; Pierre de la Harpe Metric geometry of locally compact groups, EMS Tracts in Mathematics, 25, European Mathematical Society, 2016 (Winner of the 2016 EMS Monograph Award) | MR | Zbl

[13] Yves Cornulier; Romain Tessera Dehn function and asymptotic cones of Abels’ group, J. Topol., Volume 6 (2013) no. 4, pp. 982-1008 | DOI | MR | Zbl

[14] R. Coulon; V. Guirardel Automorphisms and endomorphisms of lacunary hyperbolic groups (https://arxiv.org/abs/1606.00679) | DOI | Zbl

[15] Cornelia Druţu Quasi-isometry invariants and asymptotic cones, Int. J. Algebra Comput., Volume 12 (2002) no. 1-2, pp. 99-135 | DOI | MR | Zbl

[16] Cornelia Druţu; Mark V. Sapir Tree-graded spaces and asymptotic cones of groups, Topology, Volume 44 (2005) no. 5, pp. 959-1058 (With an appendix by Denis Osin and Mark Sapir) | DOI | MR | Zbl

[17] R. I. Grigorchuk On Burnside’s problem on periodic groups, Funkts. Anal. Prilozh., Volume 14 (1980) no. 1, pp. 53-54 | MR | Zbl

[18] R. I. Grigorchuk Degrees of growth of finitely generated groups and the theory of invariant means, Izv. Akad. Nauk SSSR, Ser. Mat., Volume 48 (1984) no. 5, pp. 939-985 | MR | Zbl

[19] R. I. Grigorchuk On the system of defining relations and the Schur multiplier of periodic groups generated by finite automata, Groups St. Andrews 1997 in Bath, I (London Mathematical Society Lecture Note Series), Volume 260, Cambridge University Press, 1999, pp. 290-317 | DOI | MR | Zbl

[20] R. I. Grigorchuk; M. J. Mamaghani On use of iterates of endomorphisms for constructing groups with specific properties, Mat. Stud., Volume 8 (1997) no. 2, pp. 198-206 | MR | Zbl

[21] M. Gromov Asymptotic invariants of infinite groups, Geometric group theory, Vol. 2 (Sussex, 1991) (London Mathematical Society Lecture Note Series), Volume 182, Cambridge University Press, 1993, pp. 1-295 | MR | Zbl

[22] Curtis Kent Asymptotic cones of HNN-extensions and amalgamated products, Algebr. Geom. Topol., Volume 14 (2014) no. 1, pp. 551-595 | DOI | MR | Zbl

[23] Adrien Le Boudec Locally compact lacunary hyperbolic groups, Groups Geom. Dyn., Volume 11 (2017) no. 2, pp. 415-454 | DOI | MR | Zbl

[24] I. G. Lysënok A set of defining relations for the Grigorchuk group, Mat. Zametki, Volume 38 (1985) no. 4, pp. 503-516 | MR | Zbl

[25] D. Meier Non-Hopfian groups, J. Lond. Math. Soc., Volume 26 (1982) no. 2, pp. 265-270 | DOI | MR | Zbl

[26] Alexander Yu. Olʼshanskii; Denis V. Osin; Mark V. Sapir Lacunary hyperbolic groups, Geom. Topol., Volume 13 (2009) no. 4, pp. 2051-2140 (With an appendix by Michael Kapovich and Bruce Kleiner) | DOI | MR | Zbl

[27] P. Papasoglu On the asymptotic cone of groups satisfying a quadratic isoperimetric inequality, J. Differ. Geom., Volume 44 (1996) no. 4, pp. 789-806 | DOI | MR | Zbl

[28] C. Reinfeldt; R. Weidmann Makanin-Razborov diagrams for hyperbolic groups (preprint)

[29] Z. Sela Endomorphisms of hyperbolic groups I: The Hopf property, Topology, Volume 38 (1999) no. 2, pp. 301-321 | DOI | MR | Zbl

[30] Simon Thomas Cayley graphs of finitely generated groups, Proc. Am. Math. Soc., Volume 134 (2006) no. 1, pp. 289-294 | DOI | MR | Zbl

[31] Simon Thomas; Boban Velickovic Asymptotic cones of finitely generated groups, Bull. Lond. Math. Soc., Volume 32 (2000) no. 2, pp. 203-208 | DOI | MR | Zbl

Cited by Sources: