Dans cet article, nous étudions la géométrie des opérations de groupes réductifs dans les variétés algébriques. Étant donné un groupe algébrique réductif connexe , nous élaborons une approche géométrique et combinatoire basée sur la théorie de Luna–Vust pour décrire toute -variété normale avec orbites sphériques. Cette description comprend le cas classique des variétés sphériques et la théorie des -variétés introduite récemment par Altmann, Hausen et Süss.
In this article, we investigate the geometry of reductive group actions on algebraic varieties. Given a connected reductive group , we elaborate on a geometric and combinatorial approach based on Luna–Vust theory to describe every normal -variety with spherical orbits. This description encompasses the classical case of spherical varieties and the theory of -varieties recently introduced by Altmann, Hausen, and Süss.
Accepté le :
Publié le :
Mots clés : action of algebraic groups, Luna–Vust theory, homogeneous spaces, valuation theory
Kevin Langlois 1
@article{AFST_2020_6_29_2_271_0, author = {Kevin Langlois}, title = {On the classification of normal $G$-varieties with spherical orbits}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {271--334}, publisher = {Universit\'e Paul Sabatier, Toulouse}, volume = {Ser. 6, 29}, number = {2}, year = {2020}, doi = {10.5802/afst.1632}, language = {en}, url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1632/} }
TY - JOUR AU - Kevin Langlois TI - On the classification of normal $G$-varieties with spherical orbits JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2020 SP - 271 EP - 334 VL - 29 IS - 2 PB - Université Paul Sabatier, Toulouse UR - https://afst.centre-mersenne.org/articles/10.5802/afst.1632/ DO - 10.5802/afst.1632 LA - en ID - AFST_2020_6_29_2_271_0 ER -
%0 Journal Article %A Kevin Langlois %T On the classification of normal $G$-varieties with spherical orbits %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2020 %P 271-334 %V 29 %N 2 %I Université Paul Sabatier, Toulouse %U https://afst.centre-mersenne.org/articles/10.5802/afst.1632/ %R 10.5802/afst.1632 %G en %F AFST_2020_6_29_2_271_0
Kevin Langlois. On the classification of normal $G$-varieties with spherical orbits. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 29 (2020) no. 2, pp. 271-334. doi : 10.5802/afst.1632. https://afst.centre-mersenne.org/articles/10.5802/afst.1632/
[1] Equivariant completions of homogeneous algebraic varieties by homogeneous divisors, Ann. Global Anal. Geom., Volume 1 (1983) no. 1, pp. 49-78 | DOI | MR
[2] Moduli of affine schemes with reductive group action, J. Algebr. Geom., Volume 14 (2005) no. 1, pp. 83-117 | DOI | MR | Zbl
[3] Stable spherical varieties and their moduli, IMRP, Int. Math. Res. Pap. (2006), 46293, 57 pages | MR | Zbl
[4] Polyhedral divisors and algebraic torus actions, Math. Ann., Volume 334 (2006) no. 3, pp. 557-607 | DOI | MR | Zbl
[5] Gluing affine torus actions via divisorial fans, Transform. Groups, Volume 13 (2008) no. 2, pp. 215-242 | DOI | MR | Zbl
[6] The geometry of -varieties, Contributions to algebraic geometry (EMS Series of Congress Reports), European Mathematical Society, 2012, pp. 17-69 | Zbl
[7] Actions of the group that are of complexity one, Izv. Ross. Akad. Nauk, Ser. Mat., Volume 61 (1997) no. 4, pp. 3-18 translation in Izv. Math. 61 (1997), no. 4, p. 685-698 | MR
[8] On the actions of reductive groups with a one-parameter family of spherical orbits, Mat. Sb., Volume 188 (1997) no. 5, pp. 3-20 translation in Sb. Math. 188 (1997), no. 5, p. 639-655 | MR | Zbl
[9] On the normality of closures of spherical orbits, Funkts. Anal. Prilozh., Volume 31 (1997) no. 4, pp. 66-69 translation in Funct. Anal. Appl. 31 (1997), no. 4, p. 278-280 | MR | Zbl
[10] A classification of reductive linear groups with spherical orbits, J. Lie Theory, Volume 12 (2002) no. 1, pp. 289-299 | MR | Zbl
[11] Invariant differential operators and representations with spherical orbits, Symmetry in nonlinear mathematical physics, Part 1, 2 (Kyiv, 2001) (Proceedings of the Institute of Mathematics of the National Academy of Sciences of Ukraine. Mathematics and its Applications), Volume 43(2), Institute of Mathematics of NAS of Ukraine, 2002, pp. 419-424 | MR | Zbl
[12] On solvable spherical subgroups of semisimple algebraic groups, Trans. Mosc. Math. Soc. (2011), pp. 1-44 | MR | Zbl
[13] Strongly solvable spherical subgroups and their combinatorial invariants, Sel. Math., New Ser., Volume 21 (2015) no. 3, pp. 931-993 | DOI | MR | Zbl
[14] Dual polyhedra and mirror symmetry for Calabi-Yau hypersurfaces in toric varieties, J. Algebr. Geom., Volume 3 (1994) no. 3, pp. 493-535 | MR | Zbl
[15] Wonderful subgroups of reductive groups and spherical systems, J. Algebra, Volume 409 (2014), pp. 101-147 | DOI | MR | Zbl
[16] The spherical systems of the wonderful reductive subgroups, J. Lie Theory, Volume 25 (2015) no. 1, pp. 105-123 | MR | Zbl
[17] Primitive wonderful varieties, Math. Z., Volume 282 (2016) no. 3-4, pp. 1067-1096 | DOI | MR
[18] Sur la géométrie des variétés sphériques, Comment. Math. Helv., Volume 66 (1991) no. 2, pp. 237-262 | DOI | Zbl
[19] Invariants et covariants des groupes algébriques réductifs., Summer course note at Monastir, 1996 (https://www-fourier.ujf-grenoble.fr/~mbrion/monastirrev.pdf)
[20] Curves and divisors in spherical varieties, Algebraic groups and Lie groups (Australian Mathematical Society Lecture Series), Volume 9, Cambridge University Press, 1997, pp. 21-34 | MR | Zbl
[21] Espaces homogènes sphériques, Invent. Math., Volume 84 (1986) no. 3, pp. 617-632 | DOI | Zbl
[22] Valuations des espaces homogènes sphériques, Comment. Math. Helv., Volume 62 (1987) no. 2, pp. 265-285 | DOI | Zbl
[23] Is the function field of a reductive Lie algebra purely transcendental over the field of invariants for the adjoint action?, Compos. Math., Volume 147 (2011) no. 2, pp. 428-466 | DOI | MR | Zbl
[24] Wonderful varieties: A geometrical realization (2009) (https://arxiv.org/abs/0907.2852)
[25] Complete symmetric varieties, Invariant theory (Montecatini, 1982) (Lecture Notes in Mathematics), Volume 996, Springer, 1983, pp. 1-44 | DOI | MR | Zbl
[26] Anneaux gradués normaux, Introduction à la théorie des singularités, II (Travaux en Cours), Volume 37, Hermann, 1988, pp. 35-68 | Zbl
[27] Automorphic forms, and quasihomogeneous singularities, Funkts. Anal. Prilozh., Volume 9 (1975) no. 2, pp. 67-68 | MR | Zbl
[28] Normal affine surfaces with -actions, Osaka J. Math., Volume 40 (2003) no. 4, pp. 981-1009 | MR | Zbl
[29] Introduction to toric varieties, Annals of Mathematics Studies, 131, Princeton University Press, 1993 (The William H. Roever Lectures in Geometry) | MR | Zbl
[30] Intersection theory on spherical varieties, J. Algebr. Geom., Volume 4 (1995) no. 1, pp. 181-193 | MR | Zbl
[31] A combinatorial smoothness criterion for spherical varieties, Manuscr. Math., Volume 146 (2015) no. 3-4, pp. 445-461 | DOI | MR | Zbl
[32] The generalized Mukai conjecture for symmetric varieties, Trans. Am. Math. Soc., Volume 369 (2017) no. 4, pp. 2615-2649 | DOI | MR | Zbl
[33] Éléments de géométrie algébrique. II. Étude globale élémentaire de quelques classes de morphismes, Publ. Math., Inst. Hautes Étud. Sci., Volume 8 (1961), pp. 1-222 | Numdam | Zbl
[34] Revêtements étales et groupe fondamental. Fasc. I: Exposés 1 à 5, Séminaire de Géométrie Algébrique, 1960/61, Institut des Hautes Études Scientifiques, 1963
[35] The Cox ring of an algebraic variety with torus action, Adv. Math., Volume 225 (2010) no. 2, pp. 977-1012 | DOI | MR | Zbl
[36] Toroidal embeddings. I, Lecture Notes in Mathematics, 339, Springer, 1973 | MR | Zbl
[37] Weylgruppe und Momentabbildung, Invent. Math., Volume 99 (1990) no. 1, pp. 1-23 | DOI | MR | Zbl
[38] The Luna–Vust theory of spherical embeddings, Proceedings of the Hyderabad Conference on Algebraic Groups (Hyderabad, 1989) (1991), pp. 225-249 | Zbl
[39] Über Bewertungen, welche unter einer reduktiven Gruppe invariant sind, Math. Ann., Volume 295 (1993) no. 2, pp. 333-363 | DOI | Zbl
[40] Über Hilberts vierzehntes Problem für Varietäten mit Kompliziertheit eins, Math. Z., Volume 213 (1993) no. 1, pp. 33-36 | DOI | Zbl
[41] Birational geometry of algebraic varieties, Cambridge Tracts in Mathematics, 134, Cambridge University Press, 1998 (With the collaboration of C. H. Clemens and A. Corti, Translated from the 1998 Japanese original) | MR | Zbl
[42] Clôture intégrale et opérations de tores algébriques de complexité un dans les variétés affines, Transform. Groups, Volume 18 (2013) no. 3, pp. 739-765 | DOI | MR | Zbl
[43] Polyhedral divisors and torus actions of complexity one over arbitrary fields, J. Pure Appl. Algebra, Volume 219 (2015) no. 6, pp. 2015-2045 | DOI | MR | Zbl
[44] Singularités canoniques et actions horosphériques, C. R. Math. Acad. Sci. Paris, Volume 355 (2017) no. 4, pp. 365-369 | DOI | MR | Zbl
[45] Stringy invariants for horospherical varieties of complexity one, Algebr. Geom., Volume 6 (2019) no. 3, pp. 346-383 | MR | Zbl
[46] On the geometry of normal horospherical -varieties of complexity one, J. Lie Theory, Volume 26 (2016) no. 1, pp. 49-78 | MR | Zbl
[47] The Cox ring of a complexity-one horospherical variety, Arch. Math., Volume 108 (2017) no. 1, pp. 17-27 | DOI | MR | Zbl
[48] Algebraic geometry and arithmetic curves, Oxford Graduate Texts in Mathematics, 6, Oxford University Press, 2002 (Translated from the French by Reinie Erné, Oxford Science Publications) | MR | Zbl
[49] Uniqueness property for spherical homogeneous spaces, Duke Math. J., Volume 147 (2009) no. 2, pp. 315-343 | DOI | MR | Zbl
[50] Toute variété magnifique est sphérique, Transform. Groups, Volume 1 (1996) no. 3, pp. 249-258 | DOI | Zbl
[51] Grosses cellules pour les variétés sphériques, Algebraic groups and Lie groups (Australian Mathematical Society Lecture Series), Volume 9, Cambridge University Press, 1997, pp. 267-280
[52] Variétés sphériques de type , Publ. Math., Inst. Hautes Étud. Sci., Volume 94 (2001), pp. 161-226 | DOI | Numdam | Zbl
[53] Plongements d’espaces homogènes, Comment. Math. Helv., Volume 58 (1983) no. 2, pp. 186-245 | DOI | Zbl
[54] Commutative ring theory, Cambridge Studies in Advanced Mathematics, 8, Cambridge University Press, 1989 (Translated from the Japanese by M. Reid) | MR | Zbl
[55] Abelian varieties, Tata Institute of Fundamental Research Studies in Mathematics, 5, Oxford University Press, 1970 | MR | Zbl
[56] Variétés horosphériques de Fano, Bull. Soc. Math. Fr., Volume 136 (2008) no. 2, pp. 195-225 | DOI | Numdam | MR | Zbl
[57] The pseudo-index of horospherical Fano varieties, Int. J. Math., Volume 21 (2010) no. 9, pp. 1147-1156 | DOI | MR | Zbl
[58] Normale Einbettungen von , Math. Ann., Volume 257 (1981) no. 3, pp. 371-396 | DOI | MR | Zbl
[59] On the geometry of spherical varieties, Transform. Groups, Volume 19 (2014) no. 1, pp. 171-223 | DOI | MR | Zbl
[60] Torus invariant divisors, Isr. J. Math., Volume 182 (2011), pp. 481-504 | DOI | MR | Zbl
[61] Normal surface singularities with action, Math. Ann., Volume 227 (1977) no. 2, pp. 183-193 | DOI | MR | Zbl
[62] Principal orbit types for algebraic transformation spaces in characteristic zero, Invent. Math., Volume 16 (1972), pp. 6-14 | DOI | MR | Zbl
[63] A remark on quotient spaces, Anais Acad. Brasil. Ci., Volume 35 (1963), pp. 487-489 | MR | Zbl
[64] On representations and compactifications of symmetric Riemannian spaces, Ann. Math., Volume 71 (1960), pp. 77-110 | DOI | MR | Zbl
[65] Galois cohomology, Springer, 1997 (Translated from the French by Patrick Ion and revised by the author) | Zbl
[66] Aktionen reduktiver Gruppen auf Varietäten, Algebraische Transformationsgruppen und Invariantentheorie (DMV Seminar), Volume 13, Birkhäuser, 1989, pp. 3-39 | DOI | MR | Zbl
[67] Equivariant completion, J. Math. Kyoto Univ., Volume 14 (1974), pp. 1-28 | DOI | MR
[68] Fano threefolds with 2-torus action: a picture book, Doc. Math., Volume 19 (2014), pp. 905-940 | MR | Zbl
[69] Classification of -manifolds of complexity , Izv. Ross. Akad. Nauk, Ser. Mat., Volume 61 (1997) no. 2, pp. 127-162 translation in Izv. Math., 61 (1997), no. 2, p. 363-397 | MR | Zbl
[70] Cartier divisors and geometry of normal -varieties, Transform. Groups, Volume 5 (2000) no. 2, pp. 181-204 | DOI | MR | Zbl
[71] Torus actions of complexity one, Toric topology (Contemporary Mathematics), Volume 460, American Mathematical Society, 2008, pp. 349-364 | DOI | MR | Zbl
[72] Homogeneous spaces and equivariant embeddings, Encyclopaedia of Mathematical Sciences, 138, Springer, 2011 | MR | Zbl
[73] Complexity of actions of reductive groups, Funkts. Anal. Prilozh., Volume 20 (1986) no. 1, p. 1-13, 96 | DOI | MR
[74] A certain class of quasihomogeneous affine varieties, Izv. Akad. Nauk SSSR, Ser. Mat., Volume 36 (1972), pp. 749-764 | MR
[75] Invariant theory, Algebraic geometry, 4 (Russian) (Itogi Nauki i Tekhniki. Seriya Sovremennye Problemy Matematiki. Fundamental’nye Napravleniya), Vsesoyuznyĭ Institut Nauchnoĭ i Tekhnicheskoĭ Informatsii, 1989, pp. 137-314 | Zbl
[76] Plongements d’espaces symétriques algébriques: une classification, Ann. Sc. Norm. Super. Pisa, Cl. Sci., Volume 17 (1990) no. 2, pp. 165-195 | Numdam | MR | Zbl
[77] Wonderful varieties of rank two, Transform. Groups, Volume 1 (1996) no. 4, pp. 375-403 | DOI | MR | Zbl
Cité par Sources :